共查询到20条相似文献,搜索用时 140 毫秒
1.
线性调频(LFM)信号是现代雷达广泛使用的一种大时宽-带宽积的低截获概率信号,根据线性调频信号的小波变换特性,小波脊线与瞬时频率的对应关系,提出了一种检测线性调频信号的联合小波脊线-Hough变换方法,该方法首先计算信号的小波变换,得到二维时-频能量分布图,采用脊算法提取信号的小波脊线,然后在小波脊线时-频平面上再进行Hough变换,从而检测噪声中的线性调频信号并估计信号参数.仿真结果证明,此方法可有效地对线性调频类信号进行检测,并且有较好的抗噪声性能. 相似文献
2.
针对线性调频(LFM)信号参数估计插值FrFT算法在信噪比较低时性能下降而且针对不同参数估计性能不稳定的问题,提出了一种修正的插值FrFT算法。首先分析了现有插值FrFT算法问题出现的原因,然后定义了分数阶域量化频率,指出当信噪比较低时,若LFM信号初始频率接近分数阶域量化频率点,插值FrFT算法出现反向补偿的概率增大,性能下降。修正的插值FrFT算法改进了插值方向的判决条件以提高噪声免疫力,并通过频移LFM信号初始频率使其不在分数阶域量化频率点附近。最后,对不同初始频率的LFM信号进行仿真,结果表明,修正的插值FrFT算法提高了LFM信号参数估计精度,性能稳定,而计算量并没有明显增加。 相似文献
3.
广角镜头在获得大视场的同时也引入了严重的光 学畸变,必须对从广角相机所获得的图像进行畸变校正。本文首先 提取图像中的曲线,依据在单参数除式畸变模型下直线段畸变成像近似呈圆弧的特点,在圆 弧拟合过程中标定出畸变参数与 畸变中心的初始近似值;进而采用一种在Hough变换空间中使 用熵函数估计校正后曲线直线度的方 法,利用熵函数对初始近似值作进一步的优化,最终求取更加精确的畸变参数与畸变中心 。基于工程实例,分别利用圆 弧拟合求初始值方法与本文所提出方法对目标图像进行畸变校正。仿真和真实图像实验表明 ,本文方法仅利用单幅图像即可实 现高精度的标定系数,且方法具有较高的稳定性,操作简单、方便和易于实现。 相似文献
4.
提出一种可用于分离不同时频分布的非平稳信号的盲信号辨识算法。采用Wigner-Ville分布(WVD)进行盲源分离时,合成信号有交叉项存在,其分离性能不理想。而Cohen 类时频分布可以抑制交叉项,并且保持时频聚集性。因此,在TFBSS 中,Cohen 类时频分布可以取得更好的分离性能。分析了Cohen 类时频分布对交叉项的抑制性能,以及对盲源分离性能的影响,结果表明:采用盲辨识算法进行电磁干扰信号分离,其效果明显优于采用WVD进行分离的效果。 相似文献
5.
A method that combines the maximum likelihood and the method of moments for estimating the parameters of the K distribution is proposed. The method results in the lowest variance of parameter estimates when compared with existing non-ML techniques 相似文献
6.
根据跳频信号的非平稳特性,采用一种基于时频分布的跳频信号盲分离算法,通过合理选择符合"单个自项"要求的时频点,将盲源分离问题转化成对一组时频分布矩阵联合对角化的数学优化问题,由于遗传算法具有良好的全局寻优能力,因此利用遗传算法对能够表征矩阵联合对交化效果的代价函数进行优化求解,寻找能将矩阵组联合对角化的权矩阵。仿真结果... 相似文献
7.
Aiming at the serious interference of the cross term existing in the time-frequency(TF) filtering method,an adaptive TF filtering method for nonstationary signals based on the generalized S-transform is proposed.Firstly the time-frequency distribution spectrum of the signal is got by the generalized S-transform,then the clustered energy of the signal on the timefrequency plane is identified by the TF region extraction algorithm,thirdly the TF filtering factor is constructed based on the distribution charact... 相似文献
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
A new method has been proposed in this paper for estimating the parameters of chaotic and regular signals by their observation against the background of white noise under conditions of the a priori uncertainty about the distribution of its values. The method is based on using the nonparametric BDS statistic revealing the sensitivity toward topological properties of the attractors of chaotic, regular and random processes that are characterized by the correlation dimension. The results of numerical simulation of the method proposed for the estimation of parameters of one-dimensional and two-dimensional chaotic mappings and also the harmonic oscillation frequency for the noise with uniform and Gaussian distribution at different levels of its intensity have been presented. This study also includes the analysis of accuracy of estimating the harmonic oscillation frequency by the proposed method and its comparison with potentially attainable values. 相似文献
18.
利用时频分析方法估计信号瞬时频率,在低信噪比条件下估计性能较差,但在时频图中,信号频率的变化趋势具有一定的规律,基本上都是围绕着信号的真实频率。基于此,给出了一种结合时频分析和信号频率模型相结合的方法,以实现信号瞬时频率的高精度估计。利用时频分析具有的良好时频分布的特点,采用最大能量方法(ME)预先估计得到信号的预估计瞬时频率(EIF);再利用瞬时频率连续性、平滑性的先验信息,建立了信号瞬时频率估计模型,并采用概率最大原理(MP)估计瞬时频率概率最大的统计变化,估计得到预估计瞬时频率的滤波起始点;最后利用卡尔曼滤波和平滑算法对预估计瞬时频率进行滤波和平滑,从而得到信号频率的精确估计。 相似文献
19.
FallahReyhani Maedeh Bakhshi Hamidreza Lohrasbipeyde Hannan 《Telecommunication Systems》2022,79(2):271-278
Telecommunication Systems - Direction of arrival estimation of LFM signal is an essential task in radar, sonar, acoustics and biomedical. In this paper, a short time Fourier transform multi-step... 相似文献
20.
Underdetermined blind separation of non-disjoint signals in time-frequency domain based on matrix diagonalization 总被引:1,自引:0,他引:1
To estimate precisely the mixing matrix and extract the source signals in underdetermined case is a challenging problem, especially when the source signals are non-disjointed in time-frequency (TF) domain. The conventional algorithms such as subspace-based achieve blind source separation exploiting the sparsity of the original signals and the mixtures must satisfy the assumption that the number of sources that contribute their energy at any TF point is strictly less than that of sensors. This paper proposes a new method considering the uncorrelated property of the sources in the practical field which relaxes the sparsity condition of sources in TF domain. The method shows that the number of the sources that exist in any TF neighborhood simultaneously equals to that of sensors. We can identify the active sources and estimate their corresponding TF values in any TF neighborhood by matrix diagonalization. Moreover, this paper proposes a method for estimating the mixing matrix by classifying the eigenvectors corresponded to the single source TF neighborhoods. The simulation results show the proposed algorithm separates the sources with higher signal-to-interference ratio compared to other conventional algorithms. 相似文献