首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
通过测定一种单晶镍基合金的高温拉伸蠕变曲线及位错运动的内摩擦应力σ0,建立了综合蠕变方程,计算出稳态蠕变期间的表观蠕变激活能及相关参数.结果表明:在蠕变期间,位错运动的内摩擦应力σ0,随外加应力的提高略有提高,随温度的升高而明显降低.蠕变后期,由于缩径使样品不同位置承受不同的有效的应力,导致筏状γ'相具有不同的粗化特征,在近断口处,载荷的有效应力增大,使筏状γ'相扭曲且粗化加剧.界面位错网对形变硬化和回复软化具有协调作用,并减缓位错切入γ'相,因此有利于合金蠕变抗力的提高.  相似文献   

2.
抗热腐蚀高温合金的蠕变组织及其转变   总被引:1,自引:0,他引:1  
研究了一种新型铸造高温合金K44在高温拉伸蠕变实验中的组织转变.通过光学及电子显微镜观察了合金的铸态组织及高温蠕变过程中不同阶段的组织特征;重点探讨了合金中γ'相的沉淀筏形化、定向粗化及位错与其交互作用.结果表明,多晶高温合金中γ'相的筏形化方向与内应力有关;位错与γ'相的相互作用使加速蠕变阶段较长.蠕变过程中,碳化物形状由骨架状分散为条片状,共晶胞界处γ'相沉淀析出球状γ相;沿着拉伸应力轴方向,从试样根部到断口,滑移系开动数量增多,γ'相的变形越来越大.  相似文献   

3.
通过对一种含2%Ru镍基单晶高温合金高温低应力及中温高应力条件下的蠕变性能测试和组织形貌观察,研究固溶温度对合金蠕变性能的影响。结果表明,铸态合金的成分偏析较严重,组织结构不均匀,在初熔温度以下,逐步提高固溶温度可以较大幅度地提高合金的高温和中温蠕变性能,蠕变时间增幅分别为63.7%、40.3%。测定合金在高温/低应力条件下的蠕变激活能493.4 kJ/mol,应力指数4.1。表明合金在高温低应力条件下的蠕变变形机制是位错在基体通道中滑移和位错攀移越过γ'相。  相似文献   

4.
通过蠕变曲线测定及组织形貌观察,研究了一种镍基单晶合金的蠕变行为和变形特征.结果表明:单晶合金在试验的温度和应力范围内,对施加应力和温度有明显的敏感性.由所得数据测算出合金的蠕变激活能和应力指数.蠕变初期在施加温度和应力场的作用下,立方γ′相逐渐转变成与施加应力轴方向垂直的N型筏状结构.稳态蠕变期间,合金的变形机制是位错攀移越过筏状γ′相,由于高温蠕变稳态阶段形成的N型γ′相筏状组织厚度较小,位错易于攀移,因而合金具有较大的应变速率.蠕变后期,由于塑性变形,在近断口处筏形γ′相转变成与应力轴方向呈45°角的形貌,合金的变形机制是位错剪切筏状γ′相.  相似文献   

5.
研究TA15钛合金在500~525℃下的高温蠕变行为,实验应力为250~350 MPa。计算合金在不同应力、不同温度下的稳态蠕变速率和应力指数以及蠕变激活能,并通过引入临界应力的概念对稳态蠕变的Arrhenius方程式进行修正,得出不同温度下的临界应力以及合金的真实蠕变应力指数,在此基础上研究其蠕变变形机制。研究结果表明,蠕变应力为350 MPa时,合金的蠕变激活能appQ=403.1 kJ/mol;500℃和600℃下,TA15合金的蠕变临界应力0?值分别为82.15 MPa和34.79 MPa;500℃,TA15合金的真实蠕变应力指数P值为1.7~4.3,600℃时,合金的P值为4.0~6.0;在实验温度和应力范围内,位错的攀移和滑移在TA15合金蠕变变形过程中的作用很大,其中以位错攀移为主,位错滑移为辅。  相似文献   

6.
本文采用拉伸应力松弛试验,模拟R-26合金在30/60万千瓦汽轮机用作紧固件的工作条件,研究合金在高温不同初始应力下,长期工作时的应力松弛行为。通过不同温度和初始应力σ_0的松弛试验,发现国产R-26合金在σ_0低时,应力松弛第Ⅰ阶段不太明显,但随着σ_o和试验温度的提高,松弛过程就变得强烈,并且试验温度越高,这种表现就越明显。σ_0大小不但影响应力降低的绝对值,而且影响松弛第Ⅰ阶段的速度,σ_0大小对松弛第Ⅱ阶段速度几乎没有影响。松弛试验后,用金相和透射电镜观察和分析了松弛试样的显微组织,并与未作松弛的试样作了对比。结果,松弛试验后的试样,其γ’相略有长大。在分布着极其细小弥散的γ'相基体及靠近晶界处,发现有大量位错和位错网堆积,位错在合金中的运动,对γ'质点的切割和绕过两种现象同时存在。  相似文献   

7.
研究了一种[001]取向镍基单晶合金的蠕变特征和变形期间的微观组织结构.结果表明:在低温高应力和高温低应力条件下,合金具有较长的蠕变寿命和较低的稳态蠕变速率;在700℃,720MPa条件下,透射电镜(TEM)观察显示蠕变期间的变形特征是1/2110位错在基体中运动,发生反应形成1/3112超肖克利(Shockley)不全位错,切入γ′相后产生层错.在900℃,450MPa条件下,没有出现蠕变初始阶段,γ′相从立方体形态演化成筏形;在加速蠕变阶段,多系滑移开动,大量位错剪切γ′相是变形的主要机制.在1070℃,150MPa条件下,γ′相逐渐转变成筏形组织,并在γ/γ′界面处形成致密的六边形位错网,位错网可以阻止位错切入γ′相,提高蠕变抗力;在蠕变后期,位错以位错对形式切入γ′相,是合金变形的主要方式.  相似文献   

8.
研究了M963合金在975℃×225MPa条件下蠕变过程中的组织演化及断裂机理.结果表明M963合金的蠕变曲线呈现出明显的3个阶段且稳态蠕变速率较低;蠕变过程中,γ'相粒子逐渐筏形化,由初始阶段分布在γ基体中的立方状孤立相转变为蠕变后期包围γ相的连续相;在枝晶干上有颗粒状M6C碳化物析出;蠕变变形机制从初始阶段的Orowan绕过γ'相粒子变为蠕变后期的位错切过γ'相粒子.  相似文献   

9.
研究Mg-9Gd-3Y-0.3Zr合金在不同温度(200~300℃)和应力(30~110MPa)条件下的蠕变行为,利用金相显微镜、透射电镜等分析蠕变过程中合金组织的演变。结果表明:温度较低时(200~250℃),蠕变曲线分为瞬时和稳态蠕变两部分,利用Arrhenius公式计算出合金的平均应力指数n=2,由此判断蠕变机制是晶界滑移机制,平均蠕变激活能Q=85.6kJ/mol;当温度为300℃时,合金经过短暂的瞬时蠕变和稳态蠕变阶段后,很快进入断裂阶段。n=4.2,蠕变机制为位错攀移机制,Q=145.5 kJ/mol。在温度较低时,稀土元素所形成的析出相β¢相阻碍位错的运动,从而提高合金的抗蠕变能力;随蠕变温度升高,析出相转变为β相,在晶界处聚集长大,使晶界处易产生应力集中,促使孔洞的形成,导致合金发生蠕变断裂。  相似文献   

10.
通过蠕变曲线测定和组织形貌观察,研究了FGH95合金的蠕变特征与变形机制.结果表明:经高温固溶及"盐浴"冷却后,FGH95合金的组织结构由细小γ'相及粒状碳化物弥散分布于γ基体所组成,由于沿晶界不连续析出的粒状(Ti,Nb)C相可提高合金的晶界强度,并抑制晶界滑移,故使其在650℃、1 034MPa条件下有较小的应变速率和较长的蠕变寿命.合金在蠕变期间的变形机制是位错切割γ或γ'相,其中,当(1/2)<110>位错切入γ相,或<110>超位错切入γ'相后,可分解形成(1/6)<112>肖克莱不全位错或(1/3)<112>超肖克莱不全位错+层错的位错组态;蠕变后期,合金的变形特征是晶内发生单取向和双取向滑移,随蠕变进行位错在晶界处塞积,其引起的应力集中致使裂纹在晶界处萌生及扩展是合金的蠕变断裂机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号