首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present theoretical developments and experimental results for the problem of estimating the conductivity map inside a volume using electrical impedance tomography (EIT) when the boundary locations of any internal inhomogeneities are known. We describe boundary element method (BEM) implementations of advanced electrode models for the forward problem of EIT. We then use them in the inverse problem with known internal boundaries and derive the associated Jacobians. We report on the results of two EIT phantom studies, one using a homogeneous cubical tank, and one using a cylindrical tank with agar conductivity inhomogeneities. We test both the accuracy of our BEM forward model, including the electrode models, as well as our inverse solution, against the measured data. Results show good agreement between measured values and both forward-computed tank voltages and inverse-computed conductivities; for instance, in a phantom experiment, we reconstructed the conductivities of three agar objects inside a cylindrical tank with an error less than 2% of their true value.  相似文献   

2.
The conductivity and permittivity of breast tumors are known to differ significantly from those of normal breast tissues, and electrical impedance tomography (EIT) is being studied as a modality for breast cancer imaging to exploit these differences. At present, X-ray mammography is the primary standard imaging modality used for breast cancer screening in clinical practice, so it is desirable to study EIT in the geometry of mammography. This paper presents a forward model of a simplified mammography geometry and a reconstruction algorithm for breast tumor imaging using EIT techniques. The mammography geometry is modeled as a rectangular box with electrode arrays on the top and bottom planes. A forward model for the electrical impedance imaging problem is derived for a homogeneous conductivity distribution and is validated by experiment using a phantom tank. A reconstruction algorithm for breast tumor imaging based on a linearization approach and the proposed forward model is presented. It is found that the proposed reconstruction algorithm performs well in the phantom experiment, and that the locations of a 5-mm-cube metal target and a 6-mm-cube agar target could be recovered at a target depth of 15 mm using a 32 electrode system.  相似文献   

3.
We propose a new impedance imaging method, electromagnetic impedance tomography (EMIT), in which the boundary electric potential measurements in electrical impedance tomography (EIT) are augmented by measurements of the exterior magnetic field induced by the currents excited in the object by the standard EIT procedures. These magnetic measurements can be obtained reliably and inexpensively by simple pickup coils located around the imaged cross section. We derive expressions for the forward problem and for the Jacobian of the measurements, and propose an iterative reconstruction algorithm using a squared error cost function. The performance of EMIT and EIT is compared in numerical simulations using a finite-element model for the conductivity distribution of several phantoms. Evaluation of the rank and condition of the Jacobian demonstrates that the additional magnetic measurements provided by a few pickup coils in EMIT turn an underdetermined EIT problem into a well-posed one with reasonable condition, or significantly improve the conditioning of the EIT problem when it is already fully determined. Reconstructions of various phantoms reveal that EMIT provides particularly significant visual and quantitative improvement (threefold to tenfold reduction in the root-mean-squared error) in the sensitivity at the center of the object, which is the area most difficult to image using EIT.  相似文献   

4.
Shape-based solutions have recently received attention for certain ill-posed inverse problems. Their advantages include implicit imposition of relevant constraints and reduction in the number of unknowns, especially important for nonlinear ill-posed problems. We apply the shape-based approach to current-injection electrical impedance tomography (EIT) reconstructions. We employ a boundary element method (BEM) based solution for EIT. We introduce two shape models, one based on modified B-splines, and the other based on spherical harmonics, for BEM modeling of shapes. These methods allow us to parameterize the geometry of conductivity inhomogeneities in the interior of the volume. We assume the general shape of piecewise constant inhomogeneities is known but their conductivities and their exact location and shape is not. We also assume the internal conductivity profile is piecewise constant, meaning that each region has a constant conductivity. We propose and test three different regularization techniques to be used with either of the shape models. The performance of our methods is illustrated via both simulations in a digital torso model and phantom experiments when there is a single internal object. We observe that in the noisy environment, either simulated noise or real sources of noise in the experimental study, we get reasonable reconstructions. Since the signal-to-noise ratio (SNR) expected in modern EIT instruments is higher than that used in this study, these reconstruction methods may prove useful in practice.  相似文献   

5.
We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.  相似文献   

6.
We proposed a new method based on total relative change (TRC) from measured boundary voltages to quantify the volume changes of fluid during electrical impedance tomography (EIT) monitoring. The results showed that TRC linearly correlated with the volume of infused saline solution into a phantom, and the slope of TRC changes was approximately linear with the infusion speed. A inserted copper tube at different positions did not affect TRC significantly. The linear relationship between TRC and volume change indicates that TRC could be a good quantitative index for dynamic EIT.  相似文献   

7.
Phantoms are frequently used in medical imaging systems to test hardware, reconstruction algorithms, and the interpretation of data. This report describes and characterizes the use of powdered graphite as a means of adding a significant reactive component or permittivity to useful phantom media for electrical impedance imaging. The phantom materials produced have usable complex admittivity at the electrical impedance tomography (EIT) frequencies from a few kilohertz to 1 MHz, as measured by our EIT system (ACT4) and by a commercial bioimpedance analyzer (BIS 4000, Xitron). We have also studied a commercial ultrasound coupling gel, which is highly electrically conductive and semisolid but that permits objects to move within it. The mixture of agar–graphite and gel–graphite, increases in permittivity and conductivity are proportional to the graphite concentration. We also report the use of a porous polymer membrane to simulate skin. A thin layer of this membrane increased resistance and the characteristic frequency of the phantoms, providing a promising candidate to simulate the effect of skin and the layered structure of a breast or other anatomical structure. The graphite also provides a realistic level of “speckle” in ultrasound images of the phantom, which may be useful in developing dual-mode imaging systems with ultrasound and the EIT.   相似文献   

8.
Electrical impedance tomography (EIT) is a badly posed inverse problem, but can be stabilized if one assumes that the conductivity is piecewise constant, with a relatively small number of distinct regions, and that the region boundaries are known, for example from prior anatomical imaging. With this assumption, we introduce a three-dimensional (3-D) boundary element method (BEM) model for the forward EIT map from injected currents to measured voltages, and 3-D inverse solutions for both BEM and the finite element method (FEM) which explicitly take into account the parameterization implied by the known boundary locations. We develop expressions for the Jacobians for both methods, since they are nonlinear, to more rapidly solve the inverse problem. We show simulation results in a torso geometry with the heart and lungs as inhomogeneities. In a simulation study, we could reconstruct the conductive values of some internal organs of a human torso with more than 92% accuracy even with inaccurate internal boundary locations, a randomized rather than constant conductivity profile (with the standard deviation of the Gaussian-distributed conductivities set to 20% of their mean values), signal to measurement noise of 50 dB, and with different meshes used for the forward and inverse problems. BEM and FEM perform similarly, leading to the conclusion that the choice between them should be based on secondary considerations such as computational efficiency or the need to model conductivity anisotropies  相似文献   

9.
In this paper, a new formulation of the reconstruction problem of electrical impedance tomography (EIT) is proposed. Instead of reconstructing a complete two-dimensional picture, a parameter representation of the gross anatomy is formulated, of which the optimal parameters are determined by minimizing a cost function. The two great advantages of this method are that the number of unknown parameters of the inverse problem is drastically reduced and that quantitative information of interest (e.g., lung volume) is estimated directly from the data, without image segmentation steps. The forward problem of EIT is to compute the potentials at the voltage measuring electrodes, for a given set of current injection electrodes and a given conductivity geometry. In this paper, it is proposed to use an improved boundary element method (BEM) technique to solve the forward problem, in which flat boundary elements are replaced by polygonal ones. From a comparison with the analytical solution of the concentric circle model, it appears that the use of polygonal elements greatly improves the accuracy of the BEM, without increasing the computation time. In this formulation, the inverse problem is a nonlinear parameter estimation problem with a limited number of parameters. Variants of Powell's and the simplex method are used to minimize the cost function. The applicability of this solution of the EIT problem was tested in a series of simulation studies. In these studies, EIT data were simulated using a standard conductor geometry and it was attempted to find back this geometry from random starting values. In the inverse algorithm, different current injection and voltage measurement schemes and different cost functions were compared. In a simulation study, it was demonstrated that a systematic error in the assumed lung conductivity results in a proportional error in the lung cross sectional area. It appears that our parametric formulation of the inverse problem leads to a stable minimization problem, with a high reliability, provided that the signal-to-noise ratio is about ten or higher.  相似文献   

10.
In this paper, we propose an algorithm that, using the extended Kalman filter, solves the inverse problem of estimating the conductivity/resistivity distribution in electrical impedance tomography (EIT). The algorithm estimates conductivity/resistivity in a wide range. The purpose of this investigation is to provide information for setting and controlling air volume and pressure delivered to patients under artificial ventilation. We show that, when the standard deviation of the measurement noise level raises up to 5% of the maximal measured voltage, the conductivity estimates converge to the expected vector within 7% accuracy of the maximal conductivity value, under numerical simulations, with spatial a priori information. A two-phase identification procedure is proposed. A cylindrical phantom with saline solution is used for experimental evaluation. An abrupt modification on the resistivity distribution of this solution is caused by the immersion of a glass object. Estimates of electrode contact impedances and images of the glass object are presented.  相似文献   

11.
Optimal experiments in electrical impedance tomography   总被引:2,自引:0,他引:2  
Electrical impedance tomography (EIT) is a noninvasive imaging technique which aims to image the impedance within a body from electrical measurements made on the surface. The reconstruction of impedance images is a ill-posed problem which is both extremely sensitive to noise and highly computationally intensive. The authors define an experimental measurement in EIT and calculate optimal experiments which maximize the distinguishability between the region to be imaged and a best-estimate conductivity distribution. These optimal experiments can be derived from measurements made on the boundary. The analysis clarifies the properties of different voltage measurement schemes. A reconstruction algorithm based on the use of optimal experiments is derived. It is shown to be many times faster than standard Newton-based reconstruction algorithms, and results from synthetic data indicate that the images that it produces are comparable.  相似文献   

12.
论述了一种测试大型硅片电阻率均匀性的新方法——电阻抗成像技术(EIT)。给出了四探针的基本原理,指出EIT的基本思想来源于四探针技术。对EIT的基本原理和重建算法在理论上进行了描述.提出可将其应用于微区薄层电阻测试,并对EIT在大型硅片微区薄层电阻率均匀性测试技术上的系统应用做了进一步探索。  相似文献   

13.
This paper is built upon the assumption that in electrical impedance tomography, vectors of voltages and currents are linearly dependent through a resistance matrix. This linear relationship was confirmed experimentally and may be derived analytically under certain assumptions regarding electrodes (Isaacson, 1991). Given measurement data consisting of voltages and currents, we treat this relationship as a linear statistical model. Thus, our goal is not to reconstruct the image but directly estimate its electromagnetic properties reflected in the resistance and/or conductance matrix using electrical impedance tomography (EIT) measurements of voltages and currents on the periphery of the body. Since no inverse problem is involved the algorithm for estimation merely reduces to one matrix inversion. We estimate the impedance resistance matrix using well established statistical inference techniques for linear regression models. We provide a comprehensive treatment for a two-dimensional homogeneous body of a circular shape, by which many concepts of electrical impedance tomography, such as width of electrodes, the difference between voltage-current and current-voltage systems are illustrated. Our theory may be applied to various tests including EIT hardware calibration and whether the medium is homogeneous. These tests are illustrated on phantom agar data.  相似文献   

14.
Electrical impedance tomography (EIT) is an imaging modality that currently shows promise for the detection and characterization of breast cancer. A very significant problem in EIT imaging is the proper modeling of the interface between the body and the electrodes. We have found empirically that it is very difficult, in a clinical setting, to assure that all electrodes make satisfactory contact with the body. In addition, we have observed a capacitive effect at the skin/electrode boundary that is spatially heterogeneous. To compensate for these problems, we have developed a hybrid nonlinear–linear reconstruction algorithm using the complete electrode model in which we first estimate electrode surface impedances, by means of a Levenberg–Marquardt iterative optimization procedure with an analytically computed Jacobian matrix. We, subsequently, use a linearized algorithm to perform a 3-D reconstruction of perturbations in both contact impedances, and in the spatial distributions of conductivity and permittivity. Results show that, with this procedure, artifacts due to electrodes making poor contact can be greatly reduced. If the experimental apparatus physically applies voltages and measures currents, we show that it is preferable to compute the reconstruction with respect to the Dirichlet-to-Neumann map rather than the Neumann-to-Dirichlet map if there is a significant possibility that electrodes will be fully disconnected. Finally, we test our electrode compensation algorithms for a set of clinical data, showing that we can significantly improve the fit of our model to the measurements by allowing the electrode surface impedances to vary.   相似文献   

15.
In electrical impedance tomography (EIT), an estimate for the cross-sectional impedance distribution is obtained from the body by using current and voltage measurements made from the boundary. All well-known reconstruction algorithms use a full set of independent current patterns for each reconstruction. In some applications, the impedance changes may be so fast that information on the time evolution of the impedance distribution is either lost or severely blurred. Here, the authors propose an algorithm for EIT reconstruction that is able to track fast changes in the impedance distribution. The method is based on the formulation of EIT as a state-estimation problem and the recursive estimation of the state with the aid of the Kalman filter. The performance of the proposed method is evaluated with a simulation of human thorax in a situation in which the impedances of the ventricles change rapidly. The authors show that with optimal current patterns and proper parameterization, the proposed approach yields significant enhancement of the temporal resolution over the conventional reconstruction strategy  相似文献   

16.
An efficient and robust image reconstruction algorithm for static impedance imaging using Hachtel's augmented matrix method was developed. This improved Newton-Raphson method produced more accurate images by reducing the undesirable effects of the ill-conditioned Hessian matrix. It is demonstrated that the electrical impedance tomography (EIT) system could produce two-dimensional static images from a physical phantom with 7% spatial resolution at the center and 5% at the periphery. Static EIT image reconstruction requires a large amount of computation. In order to overcome the limitations on reducing the computation time by algorithmic approaches, the improved Newton-Raphson algorithm was implemented on a parallel computer system. It is shown that the parallel computation could reduce the computation time from hours to minutes.  相似文献   

17.
We propose the use of electrical impedance tomography (EIT) imaging techniques in the measurement of lung resistivity for detection and monitoring of apnea and edema. In EIT, we inject currents into a subject using multiple electrodes and measure boundary voltages to reconstruct a cross-sectional image of internal resistivity distribution. We found that a simplified, therefore fast, version of the impedance imaging method can be used for detection and monitoring of apnea and edema. We have showed the feasibility of this method through computer simulations and human experiments. We speculate that the EIT imaging technique will be more reliable than the current impedance apnea monitoring method, since we are monitoring the change of internal lung resistivity. However, more study is required to verify that this method performs better in the presence of motion artifact than the conventional two-electrode impedance apnea monitoring method. Future work should include experiments which carefully simulate different kinds of motion artifacts.  相似文献   

18.
An algorithm is developed for electrical impedance tomography (EIT) of finite cylinders with general cross-sectional boundaries and translationally uniform conductivity distributions. The electrodes for data collection are assumed to be placed around a cross-sectional plane; therefore, the axial variation of the boundary conditions and the potential field are expanded in Fourier series. For each Fourier component a two-dimensional (2-D) partial differential equation is derived. Thus the 3-D forward problem is solved as a succession of 2-D problems, and it is shown that the Fourier series can be truncated to provide substantial savings in computation time. The finite element method is adopted and the accuracy of the boundary potential differences (gradients) thus calculated is assessed by comparison to results obtained using cylindrical harmonic expansions for circular cylinders. A 1016-element and 541-node mesh is found to be optimal. The algorithm is applied to data collected from phantoms, and the errors incurred from the several assumptions of the method are investigated.  相似文献   

19.
In electrical impedance tomography (EIT), a forward solver capable of predicting the voltages on electrodes for a given conductivity distribution is essential for reconstruction. The EIT forward solver is normally based on the conventional finite element method (FEM). One of the major problems of three-dimensional (3-D) EIT is its high demand in computing power and memory since high precision is required for obtaining a small secondary field which is typical for a small anomaly. This accuracy requirement is also set by the level of noise in the real data; although currently the noise level is still an issue, future EIT systems should significantly reduce the noise level to be capable of detecting very small anomalies. To accurately simulate the forward solution with the FEM, a mesh with large number of nodes and elements is usually needed. To overcome this problem, we proposed the spectral element method (SEM) for EIT forward problem. With the introduction of SEM, a smaller number of nodes and hence less computational time and memory are needed to achieve the same or better accuracy in the forward solution than the FEM. Numerical results demonstrate the efficiency of the SEM in 3-D EIT simulation.  相似文献   

20.
Electrical impedance tomography (EIT) is a developing imaging modality that is beginning to show promise for detecting and characterizing tumors in the breast. At Rensselaer Polytechnic Institute, we have developed a combined EIT-tomosynthesis system that allows for the coregistered and simultaneous analysis of the breast using EIT and X-ray imaging. A significant challenge in EIT is the design of computationally efficient image reconstruction algorithms which are robust to various forms of model mismatch. Specifically, we have implemented a scaling procedure that is robust to the presence of a thin highly-resistive layer of skin at the boundary of the breast and we have developed an algorithm to detect and exclude from the image reconstruction electrodes that are in poor contact with the breast. In our initial clinical studies, it has been difficult to ensure that all electrodes make adequate contact with the breast, and thus procedures for the use of data sets containing poorly contacting electrodes are particularly important. We also present a novel, efficient method to compute the Jacobian matrix for our linearized image reconstruction algorithm by reducing the computation of the sensitivity for each voxel to a quadratic form. Initial clinical results are presented, showing the potential of our algorithms to detect and localize breast tumors.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号