首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 61 毫秒
1.
通过分析远程网络学习系统中学习者对学习资源的访问历史,以及与学习者有类似访问兴趣的同组学习者的学习偏好,为学习者提供个性化的资源推荐服务,能够有效提高各种学习资源的利用效率,从而提高教学质量.  相似文献   

2.
个性化推荐系统能很好地解决互联网中信息过载的问题,传统推荐系统存在着商家较为分散、隐私容易泄漏的问题。提出了一种基于中间代理的电子商务智能推荐系统,利用内容过滤技术进行推荐,在考虑用户隐私的基础上使用向量空间模型挖掘用户的兴趣偏好和商品的特征评价,引入时间遗忘函数以处理兴趣变化问题,根据收集的信息产生推荐序列,针对重点难点问题提出了解决方案。采用Movielens数据集进行的实验结果表明,该方法能提供较好的推荐准确度与计算性能。  相似文献   

3.
随着互联网的飞速发展和目前传统搜索引擎存在的各种弊端,个性化搜索引擎的出现成为了一个必然;同时随着信息过载问题的出现,个性化推荐系统也已成为了不少领域关注的热点。本文将个性化推荐系统与个性化搜索引擎相结合,将推荐模式引入个性化搜索引擎中,研究并设计一个基于模式推荐的个性化搜索引擎。  相似文献   

4.
随着互联网技术的发展和大数据时代的来临,在线学习平台凭借丰富开放的信息资源、随时随地可以自主学习等优势受到了普遍关注。但随之也产生了信息过载问题,学生在海量信息中很难找到合适的资源,为此个性化推荐应运而生。作为当前解决信息过载最有效的工具之一,个性化推荐技术在过去的几十年里取得了长足的进步。主要对个性化推荐研究现状、关键技术进行了详细阐述,并展望未来的发展趋势。  相似文献   

5.
一个基于Agent的个性化推荐系统   总被引:10,自引:0,他引:10  
目前的推荐系统有基于文本过滤、基于协同过滤、基于Web挖掘等多种类型,但都只适用于某个应用领域,难以满足推荐应用的多种推荐需求。引入网络智能的思想,利用多Agent(智能代理)技术提出了一个基于Agent的个性化推荐系统架构——ABPRS。该推荐系统能满足多种推荐需求,在用户看来网络具有一定智能。  相似文献   

6.
近年来,Hashtag推荐任务吸引了很多研究者的关注。目前,大部分深度学习方法把这个任务看作是一个多标签分类问题,将Hashtag看作为微博的类别。但是这些方法的输出空间固定,在没有进行重新训练的情况下,不能处理训练不可见的Hashtag。然而,实际上Hashtag会随着时事热点不断快速更新。为了解决这一问题,该文提出将Hashtag推荐任务建模成小样本学习任务。同时,结合用户使用Hashtag的偏好降低推荐的复杂度。在真实的推特数据集上的实验表明,与目前最优方法相比,该模型不仅可以取得更好的推荐结果,而且表现得更为鲁棒。  相似文献   

7.
通过调查发现,E-learning支持系统无法有效地向学习者个性化地推荐学习资源。为了进一步提高推荐系统的性能,本文尝试将协同过滤推荐技术引入学习资源的个性化推荐研究中。协同过滤推荐技术是一种应用最为广泛的个性化推荐技术,然而其面临着冷启动、数据稀疏性问题、规模可扩展性等问题。本文通过介绍协同过滤推荐技术的工作原理、实现方法及存在问题,提出了一个优化的基于协同过滤技术的学习资源个性化推荐系统的理论模型,重点讨论了隐式评分机制和算法的实现,以提升推荐系统的实时响应和推荐精度。  相似文献   

8.
郭文静 《软件》2023,(10):53-57
随着信息技术和网络教育的发展,学习资源呈现爆炸式增长,面对丰富的学习资源,学习者并不能在短时间内最大程度匹配到适合自己的学习资源。个性化学习资源推荐(Personalized Learning Resource Recommendation,PLRR)利用新一代信息技术,全面分析学习者特征、行为、目标等信息,从海量学习资源中筛选出符合其需求的资源,并以合适的方式呈现给学习者,以提高其学习效率和满意度。本文主要从PLRR基本框架、主要算法、面临的挑战和发展趋势进行阐述,旨在为相关研究者提供一个参考框架,促进PLRR领域交流和发展。  相似文献   

9.
随着互联网技术在高校教学领域的广泛应用,在线学习已经成为一种重要的学习途径,而在开展在线学习的过程中,个性化学习路径的推荐显得尤为重要.推荐算法是个性化学习路径推荐的核心所在,通过开展基于在线学习的个性化学习路径推荐模式的研究,能够进一步对个性化学习路径推荐的策略进行明确.本研究主要介绍了学习路径推荐算法,对个性化学习...  相似文献   

10.
个性化自适应资源推荐是以学习者为中心、以人工智能和大数据技术为基础,模拟人类思维进行学习资源推荐的过程。论文在分析学习者和资源学习风格的基础上,分别构建学习者模型和资源模型,运用基于学习风格过滤推荐算法、协同过滤推荐算法、关联规则推荐算法,展开个性化自适应资源推荐研究。研究结果表明,以学习风格为基础的混合式自适应推荐的结果,更贴合学习者的个性化学习需求。  相似文献   

11.
提出了基于模糊兴趣模型与多Agent的个性化推荐系统框架,通过引入用户模糊兴趣模型,使以Agent为基础的推荐系统无法通过隐式收集用户对商品属性评价的问题得到解决,并且在客户端收集并挖掘用户的私有信息,然后从服务器中获取用户感兴趣的信息,最后生成并更新UserProfile。  相似文献   

12.
基于隐私保护的个性化推荐系统   总被引:1,自引:0,他引:1  
陈婷  韩伟力  杨珉 《计算机工程》2009,35(8):283-284
针对传统个性化推荐系统存在的隐私容易泄露的缺点,提出一个基于代理的智能推荐系统,在向用户提供准确方便的内容推荐服务的同时保护用户隐私。在该系统中,所有用户私有信息的操作都在客户端执行,使用户隐私得到完善的保护。以嵌于RSS阅读器中的个性化广告系统为例,表明该方法能准确地推荐用户感兴趣的内容并且保护用户隐私。  相似文献   

13.
本文对采用个性化推荐的方式来辅助用户开展文件检索进行研究,根据用户历史搜索记录以及用户网站行为日志进行分析来推荐用户想要的搜索结果,变被动搜索为主动推荐。文章从推荐系统的建设思路、总体架构设计、数据采集来源分析、数据处理策略、推荐引擎的模型设计、机器学习计算框架选择几个部分来开展研究。重点阐述了基于文件的协同过滤算法叠加基于图的推荐模型的算法核心。通过计算文件之间的相似度,并根据文件的相似度以及用户的历史行为生成推荐列表,再根据岗位、知识点等实体关联所建立的关系图来对推荐结果进行过滤、排序。通过开展基于机器学习的文档个性化推荐研究,为基于大数据及人工智能技术的文档及信息资源开发利用做了有益的探索。  相似文献   

14.
面对海量的在线学习资源,学习者往往面临“信息过载”和“信息迷航”等问题,帮助学习者高效准确地获取适合自己的学习资源来提升学习效果,已成为研究热点.针对现有方法存在的可解释性差、推荐效率和准确度不足等问题,提出了一种基于知识图谱和图嵌入的个性化学习资源推荐方法,它基于在线学习通用本体模型构建在线学习环境知识图谱,利用图嵌入算法对知识图谱进行训练,以优化学习资源推荐中的图计算效率.基于学习者的学习风格特征进行聚类来优化学习者的资源兴趣度,以获得排序后的学习资源推荐结果.实验结果表明,相对于现有方法,所提方法能在大规模图数据场景下显著提升计算效率和个性化学习资源推荐的准确度.  相似文献   

15.
针对个性化推荐系统中用户的多个不同需求,提出一种基于免疫算法的求解方法。该算法将要求解的个性化 推荐列表建模成一个最大化推荐准确性和多样性的多目标优化问题,采用基于用户的协同过滤技术对用户进行分类,设计了 适合推荐问题求解的抗体编码方式、克隆、变异算子。仿真实验结果表明,所提算法能够有效求得个性化推荐的最佳解,达到 可以同时为多个用户提供多个不同推荐的需求。  相似文献   

16.
基于效用的个性化推荐方法   总被引:1,自引:0,他引:1       下载免费PDF全文
当前的推荐方法未能从个性化效用角度评价推荐项目,因此用户需按自己的偏好,在推荐结果中进行再次筛选。针对该情况,提出一种基于效用的个性化推荐方法。该方法采用逼近于理想值的排序法(TOPSIS)作为衡量推荐对象效用的基本方法。为克服TOPSIS中静态权重设置的不足,采用可变精度粗糙集发现用户对属性的偏好。实验结果表明,该方法能为用户提供更好的个性化效用及准确性的推荐服务。  相似文献   

17.
个性化推荐正成为“互联网+”和“大数据”时代信息网络服务的基本形式,虽然其已在电子商务和社交媒体的广泛应用中产生了巨大的商业价值,但在具有巨大潜在社会价值的个性化知识学习领域,相关研究与应用还较为稀少.研究提出一种基于建构主义学习理论的个性化知识推荐方法——建构推荐模型.新模型首先考虑将知识系统以知识网络的形式进行表达,随后引入最近邻优先的候选知识选择策略,以及基于最大可学习支撑度优先的top-K未学知识推荐算法.建构推荐模型通过知识网络的知识关联结构挖掘用户知识需求,并推荐给出最具建构学习价值的待学新知识.以饮食健康知识系统学习为例的实验分析表明,新模型在多种情况下推荐产生的个性化知识序列均具有较强的知识关联性和较高的知识体系覆盖率.  相似文献   

18.
协同过滤推荐作为主流的个性化推荐方法在实际应用中存在一定缺陷, 在一些情况下得到的推荐结果不够准确。考虑到信任与用户偏好相似性的关系, 将信任引入到推荐模型中, 并同时考虑暗示用户偏好的多维因素, 提出基于信任偏好的个性化推荐方法, 以提高推荐系统的准确性, 并用实验验证了此方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号