首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 67 毫秒
1.
针对从文集全局角度评价特征重要性的传统特征选择方法可能忽略某些重要分类特征的问题,提出两步特征选择方法.该方法首先过滤掉类别关联性不强的特征;然后根据词的统计信息将词归为各个类别的区分词,找出每个类的分类特征的最优子集;最后,将各个类别的最优子集组合起来形成最终分类特征.实验采用朴素贝叶斯作为分类器,使用IG,ECE,CC,MI和CHI等5种特征选择公式对该方法与传统方法进行比较,得到分类性能宏平均指标对比分别为91.075%对86.971%,91.122%对86.992%,91.160%对87.470%,90.253%对86.061%,90.881%对87.006%.该方法在考虑分类特征信息的同时,尽量保留传统特征选择方法中好的特征,能更好地捕获分类信息.  相似文献   

2.
基于类别特征域的文本分类特征选择方法   总被引:11,自引:2,他引:11  
特征选择是文本分类的关键问题之一,而噪音与数据稀疏则是特征选择过程中遇到的主要障碍。本文介绍了一种基于类别特征域的特征选择方法。该方法首先利用“组合特征抽取”[1 ]的方法去除原始特征空间中的噪音 ,从中抽取出候选特征。这里“, 组合特征抽取”是指先利用文档频率(DF)的方法去掉一部分低频词,再用互信息的方法选择出候选特征。接下来,本方法为分类体系中的每个类别构建一个类别特征域,对出现在类别特征域中的候选特征进行特征的合并和强化,从而解决数据稀疏的问题。实验表明,这种新的方法较之各种传统方法在特征选择的效果上有着明显改善,并能显著提高文本分类系统的性能。  相似文献   

3.
特征选择是中文文本分类过程中的一个重要过程,特征项选择的优劣直接影响文本分类的准确率。在分析几种特征选择方法的基础上,提出一种类别区分词的特征选择方法。实验结果表明,类别区分词的特征选择方法的分类效率高于传统方法,从而验证了该方法的有效性。  相似文献   

4.
如何高效地文本分类是当前研究的一个热点。首先对文本分类概念及流程中的分词、特征提取和文本分类方法等相关技术及研究现状进行了介绍和阐述,然后分析了现有文本分类相关技术面临的挑战,最后对文本分类的发展趋势进行了总结。  相似文献   

5.
特征选择是中文文本分类过程中的一个关键环节,文本特征项选择的优劣将直接影响文本分类的准确率。针对传统的特征选择算法没有考虑到特征项的类别区分度在特征选择中的作用而丧失了一些优秀的特征项的问题,文中通过引入特征项的类别区分度对传统的特征选择算法进行改进。实验结果表明,改进方法的分类效果要好于传统方法,从而验证了改进方法的有效性和可行性。  相似文献   

6.
董梅  胡学钢 《微机发展》2007,17(7):117-119
自动文本分类就是在给定的分类体系下,让计算机根据文本的内容确定与它相关联的类别。特征选择作为文本分类中的关键,困难之一是特征空间的高维性,因此寻求一种有效的特征选择方法,降低特征空间的维数,成为文本分类中的重要问题。在分析已有的文本分类特征选择方法的基础上,实现了一种组合不同特征选择方法的多特征选择方法,应用于KNN文本分类算法,实验表明,多特征选择方法分类效果比单一的特征选择方法分类效果有明显的提高。  相似文献   

7.
基于多特征选择的中文文本分类   总被引:1,自引:0,他引:1  
自动文本分类就是在给定的分类体系下,让计算机根据文本的内容确定与它相关联的类别。特征选择作为文本分类中的关键,困难之一是特征空间的高维性,因此寻求一种有效的特征选择方法,降低特征空间的维数,成为文本分类中的重要问题。在分析已有的文本分类特征选择方法的基础上,实现了一种组合不同特征选择方法的多特征选择方法,应用于KNN文本分类算法,实验表明,多特征选择方法分类效果比单一的特征选择方法分类效果有明显的提高。  相似文献   

8.
中文文本体裁分类中特征选择的研究   总被引:2,自引:2,他引:2       下载免费PDF全文
针对文本体裁自动分类在特征选择和权重计算方面的特殊性,提出文本的内容类别信息,改进传统特征选择方法CHI以及权重计算公式tf.idf,并运用支持向量机在含5类体裁的语料上进行中文文本体裁自动分类。实验结果表明,该方案是可行的。  相似文献   

9.
中文文本分类中的特征选择研究   总被引:14,自引:0,他引:14  
有多种特征选择算法被用于文本自动分类,YimingYang教授曾针对英文文本分类中的特征选择做过深入的研究,并得出结论:IG和CHI方法效果相对较好.考虑到该结论不一定适合对中文文本的分类,对中文文本分类中的特征选择方法进行研究,采用了包含500篇新闻的中文语料库对几种特征选择算法进行测试,结果表明:在测试的特征选择算法中,χ2估计方法无需因训练集的改变而人为调节特征阀值,并且分类准确率较高.  相似文献   

10.
特征选择在文本分类中起重要的作用。文档频率(DF)、信息增益(IG)和互信息(MI)等特征选择方法在文本分类中广泛应用。已有的实验结果表明,IG是最有效的特征选择算法之一,该方法基于申农提出的信息论。本文基于粗糙集理论,提出了一种新的特征选择方法(KG算法),该方法依据粗糙集理论关于知识的观点,即知识是分类事物的能力,将知识进行量化,提出知识增益的概念,得到基于知识增益的特征选择方法。在两个通用的语料集OHSUMED和NewsGroup上进行分类实验发现KG算法均超过IG的性能,特别是在特征空间的维数降到低维时尤其明显,可见KG算法有较好的性能;  相似文献   

11.
本文研究了文档频率DF、信息增益IG、互信息MI、x2分布(CHI)、期望交叉熵、优势率、文本证据权七种不同的特征选取方法。针对DF对高频词过于依赖,以及MI,IG和CHI对低频词过于依赖这一特点,试验了将它们组合起来形成DF—MI,DF-IG两种组合式特征选择方法,同时针对DF的特点提出了新的特征选取方法DFR,用KNN分类器试验了几种组合方法和DFIK方法,实验结果表明DFIK较DF—MI、DF—IG对分类效果有明显的提高,而组合特征选取方法较单个特征选取方法对分类器的分类效果有了很大的提高。  相似文献   

12.
本文研究了文档频率DF、信息增益IG、互信息MI、x2分布(CHI)、期望交叉熵、优势率、文本证据权七种不同的特征选取方法.针对DF对高频词过于依赖,以及MI,IG和CHI对低频词过于依赖这一特点,试验了将它们组合起来形成DF-MI,DF-IG两种组合式特征选择方法-同时针对DF的特点提出了新的特征选取方法DFR-用KNN分类器试验了几种组合方法和DFR方法-实验结果表明DFR较DF-MI、DF-IG对分类效果有明显的提高,而组合特征选取方法较单个特征选取方法对分类器的分类效果有了很大的提高.  相似文献   

13.
文本分类中特征选择的约束研究   总被引:7,自引:0,他引:7  
特征选择在文本分类中起重要的作用.文档频率(DF)、信息增益(IG)和互信息(MI)等特征选择方法在文本分类中广泛应用.已有的实验结果表明,IG是最有效的特征选择算法之一,DF稍差而MI效果相对较差.在文本分类中,现有的特征选择函数性能的评估均是通过实验验证的方法,即完全是基于经验的方法,为此提出了一种定性地评估特征选择函数性能的方法,并且定义了一组与分类信息相关的基本的约束条件.分析和实验表明,IG完全满足该约束条件,DF不能完全满足,MI和该约束相冲突,即一个特征选择算法的性能在实验中的表现与它是否满足这些约束条件是紧密相关的.  相似文献   

14.
文本分类是文本信息处理领域一个非常重要的研究方向,为了节省文本分类处理中所需的存储空间和运算时间,在分类之前用高效的算法减少所需分析的数据是非常必要的。该文介绍了一种文本分类中特征降维的方法。和传统的方法不同,该文所涉及的特征是从句子中提取的不同长度的词组,然后用比数比来对其进行特征选择。实验结果表明,该文提出的方法与传统方法相比,提高了文本分类的准确率。  相似文献   

15.
特征选择是数据挖掘和机器学习等领域内重要的预处理步骤,近年来得到了广泛的关注。文本数据的高维性往往会影响分类等数据挖掘任务的效率,因此特征选择常被作为文本分类过程中的重要组成部分,以达到降维的目的。随着分类技术的快速发展,类别的日益细化,文本的多类分类问题为特征选择方法提出了更多的挑战。本文面向文本多类分类的应用背景,阐述了目前特征选择方法所面临的主要挑战,给出了多分类特征选择方法的主要种类。本文沿着相关研究的发展路线,由易至难,由浅入深,通过对目前多分类特征选择算法的应用情况进行总结,并进行综述评论,最后对全文进行了概括,提出了未来可能的研究方向。  相似文献   

16.
对于不同类别样本数量差别很大的偏斜文本数据集,使用传统的特征选择方法所选出的特征绝大多数来自于大类,会使得分类器偏重大类而忽略小类,直接影响分类效果。该文首先针对偏斜文本数据集的数据特点,分析发现偏斜数据集中影响特征选择的两个重要因素,即特征项的类别分布和类间差异,其中类别分布因素反映的是特征项在整个数据集中的类别频率差异;而类别差异因素反映的是特征项在不同类别之间的相对文档频率差异。然后基于这两个重要因素构造形成一个新的尤其适用于偏斜文本分类的特征选择函数— 相对类别差异(Relative Category Difference,RCD)。与传统的特征选择方法进行对比实验的结果表明,RCD特征选择方法对于偏斜文本分类效果更优。  相似文献   

17.
袁轶  王新房 《计算机工程》2012,38(12):155-157
中文文本分类中传统特征选择算法在低维情况下分类效果不佳。为此,提出一种结合方差思想的评估函数,选出具有较强类别信息的词条,在保证整体分类性能不下降的同时,提高稀有类别的分类精度。采用中心向量分类器,在TanCorpV1.0语料上进行实验,结果表明,该方法在低维空间优势明显,与常用的文档频率、信息增益等9种特征选择算法相比,宏平均值均有较大提高。  相似文献   

18.
文本分类中的特征抽取   总被引:52,自引:3,他引:52  
特征提取是用机器学习方法进行文本分类的重点和难点。文中比较了目前几种最常用的特征抽取方法,提出了一种改进型的互信息特征抽取方法,并在构建的实验系统中比较了这几种特征抽取方法,发现改进的特征抽取方法是有效可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号