共查询到18条相似文献,搜索用时 46 毫秒
1.
如果背景中光线变化,那么视频图像分割将会变得比较困难。为了对光线变化的图像进行顺利侵害,提出了一种利用贝叶斯学习方法来进行视频图像分割的算法,即先在每个像素点处对不断变化的背景建模,同时计算每个像素点处的颜色直方图,再用这些直方图来表示该像素点处特征向量的概率分布,然后用贝叶斯学习方法来进行判断,以确定在光线缓慢或者突然变化的时候,每个像素点是属于前景还是属于背景。 相似文献
2.
为了克服利用变化检测分割视频对象过程中的噪声、复杂运动、暴露背景的影响,提出了一种基于统计变化检测的实时分割视频对象新方法。在该方法中,由于统计变化检测技术是利用t分布来有效消除噪声的影响,而不需要估计噪声的方差,而且可利用间隔为k的两帧图像代替连续两帧来进行变化检测,因此可以很好地处理关节运动和慢运动;另外,对两个连续的统计变化检测结果取交集还可以消除暴露背景的影响,并能消除大部分的残留噪声,且几乎不增加计算量,因此统计变化检测可作为视频对象分割的基础,试验结果表明,该方法不仅解决了传统的变化检测过程中的噪声、复杂运动以及暴露背景影响,而且能够自动实时地分割视频对象,以满足MPEG-4等基于对象的视频应用。 相似文献
3.
复杂背景下的细胞图像分割技术研究 总被引:1,自引:0,他引:1
针对复杂背景下的细胞图像分割问题,考虑到传统阈值分割方法的局限性,提出了一种自适应局部阈值分割算法。该算法的基本思想是将首次分割得到的目标区域按照一定准则进行划分,分为已经正确提取的目标细胞和包含有多个细胞及部分背景的模糊区域,然后将各个模糊区域作为新的图像分别进行再次分割,从中提取出目标细胞。实验结果表明,该算法能够稳定地实现目标分割提取,具有较好的鲁棒性。 相似文献
4.
针对传统视频图像背景分割方法效率低、抗干扰能力弱、层次模糊等问题,基于全卷积深度学习网络算法研究了一种视频图像背景的分割方法。应用全卷积神经网络算法,完成视频图像背景的特征提取,构建结构化学习模块,再利用深度学习网络实现视频图像背景的多模态特征融合,基于损失函数建立视频图像背景分割模型。结果显示,对于随机的10组视频图像数据包,设计方法完成分割处理所用时间的平均值为15.03min,像素准确率均值为99.24%,分割区域间对比度均值为0.91,区域内一致性测度值均值为9.52,分割合理性均值为0,表明本次设计方法有效改善了视频图像背景的分割质量和分割效果,具有较高的精准性和完整性。 相似文献
5.
提出了背景置信度图像和背景标示图像的概念,给出了一种基于背景重建和象素最小距离(M DBP)的自动视频对象分割方法。首先运用基于背景置信度图像和背景标示图像的背景重建技术从视频序列的多帧图像中重建出可靠的背景图像,然后运用差背景法分割视频对象(VO),同时再利用象素最小距离(M D BP)和总体象素最小距离(W M DBP)准则对分割出的视频对象图像进行处理,克服由于背景的微小变化而引起的前景对象的错误检测。试验结果表明该文给出方法能够较好地重建背景,对于背景静止的视频能够得到更好的分割结果。 相似文献
6.
《计算机应用与软件》2016,(8)
复杂背景叶片图像分割是当前的研究热点和难点。提出一种结合简单交互和标记分水岭的方法,有效地解决了该问题。首先,让用户在复杂背景叶片图像上奇偶相间地标定叶边缘点和叶外点;经过一系列处理得到标记图像。接着,把复杂背景叶片图像转换为灰度图像、L~*a~*b~*图像;以标记图像为参数,分别对灰度图像、a~*分量图像、b~*分量图像,进行标记分水岭分割。最后,以投票方式综合得到最终的分割结果。对20个种类,200张复杂背景叶片图像的分割实验表明:该方法能实现较准确的分割,并且能保留叶片细节部分;对个别叶片有细小的错分,但对其形状影响轻微。 相似文献
7.
针对大空间中红外视频火灾图像边缘模糊,不易准确分割问题,研究了一种基于背景差分和C-V模型的分割方法。通过背景差分得到运动图像;利用形态学处理得到完整的运动区域,并获得其外接矩形;以外接矩形作为C-V模型的初始轮廓曲线进行分割,得到封闭、完整的运动目标轮廓。该算法避免了对整幅图像分割,减少了运算量。通过实验仿真并与阈值分割算法比较,证明了该算法的准确性和有效性,有利于下一步火灾特征提取与识别。 相似文献
8.
复杂背景下小麦叶部病害图像分割方法研究 总被引:1,自引:0,他引:1
针对复杂背景下小麦叶部病害图像分割问题,以小麦条锈病、叶锈病为研究对象,提出一种结合K-means聚类、Otsu阈值法等多种方法的分割策略。主要分三个步骤将小麦病斑图像分割出来:首先,利用背景与叶片a*b*分量的差异性,采用K-means聚类分割方法,去除泥土、杂草、阴影等背景,分割出小麦植株图像;其次,利用Otsu动态阈值法进行二值化处理,并结合数学形态学运算及面积阈值法分割出带有病斑的主要小麦病害叶片图像;最后,采用K-means算法对小麦病害叶片图像进行聚类运算,最终分割出小麦病斑图像。利用该方法进行分割实验,分割准确率达到95%以上,分割效果理想,为小麦叶部病害图像分割提供了参考,也为后续的小麦病害识别和诊断提供了基础。 相似文献
9.
视频分割是目标识别的关键技术。论文在对现有算法的分析,尤其是对空间分割中K均值算法和时间分割中的背景登记算法分析的基础上,改进了K均值算法,提出了一种基于时空结合的符合人眼对颜色变化敏感因素的分割算法。其基本思想是对视频序列分别做时间和空间分割,然后根据贝叶斯分类法对上述分割结果进行区域合并,即二次分类,从而得到分割结果。实验结果表明,论文提出的分割算法在保证算法效率的前提下,提高了分割的精度。 相似文献
10.
通过对贝叶斯分类器的讨论,提出将贝叶斯方法应用于医学图像分割后的合并策略思想,旨在提高图像分割的准确性,为计算机自动识别医学图像中包含的各种元素提供更加可靠的依据。首先让计算机自动识别出尿沉渣图像中的红细胞、白细胞、管型细胞、上皮细胞和结晶等有形成分,其次将各细胞实体正确地分割出来。由于图像中存在着大量背景噪音,因此在分割之前需要进行去除噪音的预处理。预处理采用数学形态学的方法,依次进行边缘提取、梯度图像二值化、腐蚀、膨胀。最后,在图像分割过程中,使用最大后验概率法进行破损目标体的合并,为进一步的特征提取和分类作了基础。在目标体分类中使用朴素贝叶斯分类器进行分类。将本方法应用于尿沉渣检查自动图像分析系统中,实验结果表明这一方法效果较好。 相似文献
11.
Pingkun Yan Wuxia Zhang Baris Turkbey Peter L. Choyke Xuelong Li 《Computer Vision and Image Understanding》2013,117(9):1017-1026
Organ shape plays an important role in clinical diagnosis, surgical planning and treatment evaluation. Shape modeling is a critical factor affecting the performance of deformable model based segmentation methods for organ shape extraction. In most existing works, shape modeling is completed in the original shape space, with the presence of outliers. In addition, the specificity of the patient was not taken into account. This paper proposes a novel target-oriented shape prior model to deal with these two problems in a unified framework. The proposed method measures the intrinsic similarity between the target shape and the training shapes on an embedded manifold by manifold learning techniques. With this approach, shapes in the training set can be selected according to their intrinsic similarity to the target image. With more accurate shape guidance, an optimized search is performed by a deformable model to minimize an energy functional for image segmentation, which is efficiently achieved by using dynamic programming. Our method has been validated on 2D prostate localization and 3D prostate segmentation in MRI scans. Compared to other existing methods, our proposed method exhibits better performance in both studies. 相似文献
12.
Cheolkon Jung Meng JianAuthor VitaeJuan LiuAuthor Vitae Licheng JiaoAuthor VitaeYanbo ShenAuthor Vitae 《Pattern recognition》2014
In this paper, we propose a new approach to interactive image segmentation via kernel propagation (KP), called KP Cut. The key to success in interactive image segmentation is to preserve characteristics of the user?s interactive input and maintain data-coherence effectively. To achieve this, we employ KP which is very effective in propagating the given supervised information into the entire data set. KP first learns a small-size seed-kernel matrix, and then propagates it into a large-size full-kernel matrix. It is based on a learned kernel, and thus can fit the given data better than a predefined kernel. Based on KP, we first generate a small-size seed-kernel matrix from the user?s interactive input. Then, the seed-kernel matrix is propagated into the full-kernel matrix of the entire image. During the propagation, foreground objects are effectively segmented from background. Experimental results demonstrate that KP Cut effectively extracts foreground objects from background, and outperforms the state-of-the-art methods for interactive image segmentation. 相似文献
13.
Silvano Di Zenzo 《Image and vision computing》1983,1(4):196-210
Image segmentation is a subfield of image analysis whose potential for applications has stimulated both practical and theoretical research, particularly in the last decade. A selection of papers is reviewed to give an idea of the main lines of attack that are being pursued at present. 相似文献
14.
基于期望最大化的水平集分割算法 总被引:1,自引:0,他引:1
针对经典的水平集算法(比如Chan-Vese模型算法)在迭代过程中要重新初始化和容易受噪声和模棱两可的边界的影响的缺点,增加一项内部能量泛函达到不需重新初始化的目的,并结合贝叶斯决策理论,利用图像先验知识,提出了一个改进的能量函数,根据符号距离函数来不断调整水平集函数的偏差。该函数是利用期望最大化算法来得到的。实验结果表明,该算法分割精度和运行准确率上都优于经典算法。 相似文献
15.
16.
17.
分形理论是20世纪70年代美国Benoit B.Mandelbrot提出的,在图像压缩领域中得到了迅速的发展与应用,分形编码压缩的两大难点是如何进行图像分割和构造迭代。介于现阶段的分形压缩算法复杂,编码时间长的缺点,本文通过细化图像分割以减轻迭代时计算量的思想,采用串行边界分割与并行区域分割相合的一种改进方法。 相似文献
18.
Computer-aided automatic analysis of microscopic leukocyte is a powerful diagnostic tool in biomedical fields which could reduce the effects of human error, improve the diagnosis accuracy, save manpower and time. However, it is a challenging to segment entire leukocyte populations due to the changing features extracted in the leukocyte image, and this task remains an unsolved issue in blood cell image segmentation. This paper presents an efficient strategy to construct a segmentation model for any leukocyte image using simulated visual attention via learning by on-line sampling. In the sampling stage, two types of visual attention, “bottom-up” and “top-down” together with the movement of the human eye are simulated. We focus on a few regions of interesting and sample high gradient pixels to group training sets. While in the learning stage, the SVM (support vector machine) model is trained in real-time to simulate the visual neuronal system and then classifies pixels and extracts leukocytes from the image. Experimental results show that the proposed method has better performance compared to the marker controlled watershed algorithms with manual intervention and thresholding-based methods. 相似文献