首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
半固态A356铝合金浆料的充填行为及组织分布   总被引:2,自引:0,他引:2  
采用流变压铸方法研究了低过热度浇注和弱电磁搅拌制备的半固态A356铝合金浆料的充填行为和组织分布,结果表明:采用该技术制备的半固态A356铝合金浆料,其组织形态优良,经过感应均热后,浆料内部的温度场分布均匀,初生α—Al晶粒更圆整.半固态A356铝合金的浆料温度、压射比压和冲头速度对浆料的充填行为有较大的影响.较高的浆料温度、压射比压和冲头速度都有利于半固态铝合金浆料的充填.在本文的实验条件下,合适的浆料温度为585-595℃,压射比压为15-25MPa,冲头速度为0.072-0.12m/s.得到的流变压铸件的组织分布均匀,无明显的固液相偏析.  相似文献   

2.
Correlation of microstructure with mechanical properties and fracture toughness of three cast A356 aluminum alloys fabricated by low-pressure-casting, rheo-casting, and casting-forging was investigated in this study. Microfracture observation results showed that eutectic Si particles were cracked first, but that the aluminum matrix played a role in blocking crack propagation. Tensile properties and fracture toughness of the cast-forged alloy were superior to those of the low-pressure-cast or rheo-cast alloy. These results were interpreted by a simple fracture initiation model based on the basic assumption that crack extension initiated at a certain critical strain developed over some microstructurally significant distance.  相似文献   

3.
In this research, to predict the mechanical properties of A356, a relatively new approach is presented that uses artificial neural network and finite element technique which combines mechanical properties data in the form of experimental and simulated solidification conditions. It is revealed that predictions of this study are consistent with experimental measurements for A356 alloy. The results of this research were also used for solidification codes of SUT CAST software.  相似文献   

4.
The effects of the rheocasting process and T5 heat treatment on microstructure and mechanical properties of A356 alloy were investigated. The results show that the temperature range for the solid-liquid state is roughly between 560 °C and 630 °C, and the solid fraction increases from 0% to 100% with decreasing temperature. The finer microstructure in rheocasting in comparison with the one in conventional casting was attributed to pressure breaking down the secondary dendrite arms, especially for specimens around 600-610 °C. It was proved that rheocasting specimens have improved mechanical properties over the conventional casting ones. Furthermore, the result shows that T5 heat treatment can strengthen A356 alloy, while the plasticity was reduced at the same time.  相似文献   

5.
Accumulative roll bonding (ARB) process was used in this study as an effective method for manufacturing high-strength, finely-dispersed and highly-uniform A356 alloy. It was found that when the number of ARB cycles was increased, the uniformity of silicon particles in the aluminum matrix improved, the particles became finer and spheroider and therefore, the tensile strength (TS) and ductility of the samples improved. The microstructure of the manufactured A356 alloy after five ARB cycles indicated a totally modified structure such that it's TS and elongation values reached 269 MPa and 5.3% which were 2.6 and 2.5 times greater than those of the as-cast material, respectively. Also, the hardness value increased from 55.4 (for as-cast sample) to 100.2 HV (after the fifth cycle of ARB), and registered 81% increase.  相似文献   

6.
剪切停留对液固温区A356合金组织及瞬态流变化为的影响   总被引:2,自引:0,他引:2  
采用自行研制的流变装置进行瞬态流变试验,研究了剪切停留对液固温区不同初生α相形态A356合金的组织变化及其瞬态液变化为的影响,结果表明,在相同的剪切条件下,随剪切停留时间的增加,瞬时峰值表观粘度增加,说明切停留期间半固态合金初生α相形态发生了变化;对半固态合金初生相形态观察发现,剪切停留促使初生相发生了“团聚”或“合并”,而且初生相形态变化的程度取决于剪切停留时间和初生相的退化程度,对试验结果进行曲线拟合,得到了描述半固态合金峰值表观粘度和剪切停留时间的瞬态流变方程。  相似文献   

7.
A356铸造铝合金疲劳性能影响因素概述   总被引:1,自引:1,他引:1  
对影响A356铸造铝合金疲劳性能的各种因素进行了概括总结,特别是对其疲劳性能具有重大影响的铸造缺陷、硅颗粒、SDAS、富铁相及裂纹闭合机制进行了详细的讨论,并对其影响机理进行了总结,最后讨论了提高其疲劳性能的一些手段.  相似文献   

8.
以A356铸造铝合金轮毂为研究对象,通过改变固溶处理工艺参数,研究了固溶处理工艺与合金力学性能之间的关系.当温度为535℃时,随着保温时间的延长,抗拉强度、硬度及延伸率基本上都增大后减小.当保温时间为3.5~4.5h时,轮缘的强度、硬度及延伸率才能达到很好的匹配.同时将小样试验所得到的结果应用于生产实际,必须将保温时间延长2~3h.A356铸造铝合金在545℃×3.5h下进行固溶处理具有较好的综合力学性能,故固溶处理的优先工艺为545℃×3.5h,同时在实际生产应用中应将保温时间延长到5.5~6.5h,这样可以将生产周期缩短1h.  相似文献   

9.
High cycle fatigue (HCF) life in cast Al-Mg-Si alloys is particularly sensitive to the combination of microstructural inclusions and stress concentrations. Inclusions can range from large-scale shrinkage porosity with a tortuous surface profile to entrapped oxides introduced during the pour. When shrinkage porosity is controlled, the relevant microstructural initiation sites are often the larger Si particles within eutectic regions. In this paper, a HCF model is introduced which recognizes multiple inclusion severity scales for crack formation. The model addresses the role of constrained microplasticity around debonded particles or shrinkage pores in forming and growing microstructurally small fatigue cracks and is based on the cyclic crack tip displacement rather than linear elastic fracture mechanics stress intensity factor. Conditions for transitioning to long crack fatigue crack growth behavior are introduced. The model is applied to a cast A356-T6 Al alloy over a range of inclusion severities.  相似文献   

10.
Abstract

The effects of microstructural variables, including secondary dendrite arm spacing (SDAS), the size of primary α phase, the aspect ratio of eutectic Si particle and the thickness of eutectic wall structure, on tensile behaviour of A356 cast aluminium alloy, were quantitatively identified using linear regression analysis method. For systematic microstructural control of A356 specimen, directional solidification method was used with different solidification rates of 5, 25, 50 and 100 μm s?1 respectively. The linear regression analysis suggests that each microstructural variable affects tensile strength and tensile elongation of A356 cast aluminium alloy in a similar fashion. The change in tensile behaviour with varying microstructural variables in A356 cast aluminium alloy is discussed based on fractographic and micrographic observations.  相似文献   

11.
This study is concerned with the effects of HIPping on high-cycle fatigue properties of investment cast A356 Al alloys. Tensile and high-cycle fatigue tests were conducted on cast alloys, two of which were HIPped, and then the test data were analyzed in relation with microstructures, tensile and fracture properties, and fatigue fracture mode. Eutectic Si particles were homogeneously dispersed in the matrix of the casting A356 Al alloys, but there were many large pores formed as casting defects. The high-cycle fatigue test results indicated that fatigue strength of the HIPped alloys was higher than that of the non-HIPped alloys because of the significant reduction in volume fraction of pores by HIPping. In the non-HIPped specimens, fatigue cracks initiated at large pores adjacent to the specimen surface and then propagated down to several hundreds micrometers depth while coalescing with other large pores. On the other hand, the HIPped specimens, where pores did not affect the fatigue much, fatigue cracks initiated at eutectic Si particles and propagated along them, thereby leading to improved fatigue strength by 40 to 50% over the non-HIPped specimens.  相似文献   

12.
Here,a single-track CoCrFeMnNi high entropy alloy(HEA)was successfully fabricated by laser melting deposition(LMD).Combining the experimental observations and numerical simulation,the microstruc-ture and mechanical properties of the as-deposited parts were systematically studied from the perspective of thermo-mechanical history experienced during the LMD process.The strengthening mech-anisms of the LMDed CoCrFeMnNi HEA parts were clarified.The frictional stress strengthening,grain boundary strengthening and dislocation strengthening contributed the whole yield strength of the parts.Dislocation strengthening dominated the strengthening mechanism.It was expected that the establish-ment of the relationship between thermo-mechanical history,microstructure and mechanical properties of the LMDed CoCrFeMnNi HEA could shed more insights into achieving HEA parts with the desired microstructure and high performance.  相似文献   

13.
通过霍普金森压杆实验研究2519A铝合金T87,T8,T9和T9I64种形变热处理状态在1040~5900s-1应变率范围的动态冲击变形行为,并利用金相、透射电镜等手段分析在动态变形中合金微观组织的演变规律,研究不同形变热处理工艺对2519A铝合金动态变形行为的影响。结果表明:与T87态合金相比,强冷变形的T8和T9态合金高速冲击的动态屈服强度大幅提升,但是合金的绝热剪切敏感性也显著增加,更容易发生绝热剪切开裂。断续时效T9I6工艺可以提高2519A合金强化析出相的密度,使θ'相(Al2Cu)更细小弥散分布。这样降低了θ'析出相在高应变率下被位错切割分解的速率,提高合金在高速变形过程中的稳定性。2519A-T9I6铝合金在高应变率下拥有较高的动态屈服强度和较低的绝热剪切敏感性,在高速变形过程中表现最佳。  相似文献   

14.
In the present study, a novel thixoforming process for semi-solid deformation of A356 aluminum alloy is introduced using a continuous hot deformation process to the temperature being lower than the eutectic temperature of the alloy. A new hypothesis was introduced and the deformation mechanism of the alloy was investigated using the presented hypothesis. Microstructure and fracture surfaces of thixoformed samples were investigated using image analyzing technique and scanning electron microscopy. Obtained results indicated that this novel thixoforming process produces fine and compact silicon particles, dispersed uniformly in the microstructure of the alloy, compared to those produced by conventional thixoforming and gravity-cast processes with large and integrated morphology for silicon particles. The production stages of these silicon particles in this process were well documented by mentioned hypothesis. In order to investigate the effect of this novel process on mechanical properties of A356 alloy, tensile tests were conducted on produced samples. It was found that morphological changes of silicon particles as well as increasing the density ratio of samples in this process have a remarkable effect on enhancing the mechanical properties of produced alloy in comparison with other production routes. A new combination parameter, i.e. silicon density ratio (SDR) index was introduced. This parameter correlates the mechanical properties of samples to morphological properties of silicon particles and density ratio of them. Results of the study also indicated that samples with low SDR index have superior mechanical properties and consequently intergranular fracture mode.  相似文献   

15.
The objective of this investigation was to evaluate the effect of vibrations (during solidification) on the metallurgical properties of A356 aluminum casting. Mechanical vibrations were applied to A356 aluminum alloy through set up. A356 melt has been subjected to mechanical vibration with the frequency range from 0 to 400 Hz with constant amplitude 5 µm. Grain refinement was obtained through mold vibration. Metallurgical properties were examined through optical microstructure, tensile fracture scanning electron microscope (SEM) and SEM image of test specimens prepared under different conditions of solidification. Results indicate that mold vibration effectively modified the microstructure of A356 casting and it has uniform and smaller grain size with fibrous silicon particle than nonvibrated casting. Grain refinement results increase in mechanical properties with increase in frequency of vibration of mold during the solidification. SEM micrograph of tensile fracture surface was carried out to study the influence of microstructure on fracture mode. SEM image of tensile fractured surface shows transgranular cleavage facets due to fracture of primary silicon particles. Fractures are brittle in nature so observation indicates low ductility and brittle fracture.  相似文献   

16.
《Materials Letters》2005,59(2-3):190-193
The present investigation attempted to evaluate the effect of ultrasonic vibration on the nucleation and growth of aluminum alloy A356 melt. A356 melt was treated at various solid fractions isothermally with ultrasonic vibrations by dipping the acoustic radiator into the melt. Experimental result confirmed that globular grains could be effectively obtained when the melt was ultrasonically treated at the temperature close to its liquidus and subsequently cooled quickly. It further illustrated the difficulty to form globular grains when the specimens were treated at isothermal temperatures in the mushy zone. It may imply that in the given experiments cavitations-induced heterogeneous nucleation plays a more important role than dendrite fragmentation in the formation of globular grains.  相似文献   

17.
The effects of casting thickness, modification and heat treatment on the microstructure and mechanical properties of A356.2 alloy have been investigated. Experiments were conducted with unmodified, Sr-modified (0.02% Sr) and Sb-modified (0.2% Sb) on both sand cast test bars with various thicknesses (from 3 to 9 mm) and permanent mold cast test bars.The microstructural changes associated with these treatments have been studied by optical metallography, scanning electron microscopy (SEM) and image analysis.The tensile properties of all samples were determined and the relationship between cooling rate, modification and heat treatment has been investigated.The results show that modification has a beneficial effect on microstructure and improves the mechanical properties of the alloy. Modification has a major role in controlling the kinetics of the spheroidisation of silicon particles during heat treatment. Tensile properties improved more with heat treatment than with modification or cooling rate.Antimony is effective on mechanical properties at higher solidification rates, while Strontium is more effective at lower solidification rates.  相似文献   

18.
对处于交变应力下A356铝合金的单轴疲劳寿命以及变形行为进行了研究,并与单一应力加载下的加载情况进行了对比.发现先进行高应力加载后换用低应力加载将会显著延长合金的疲劳寿命.合金的循环应变值主要与合金的循环加载应力幅值有关.此外,利用透射电镜的方法观察了在不同循环加载历史条件下合金中微观结构的变化情况,尤其是位错以及位错带的演变规律.并发现了沉淀物附近的位错塞积现象.  相似文献   

19.
液相线半连续铸造A356铝合金二次加热合金组织与工艺   总被引:1,自引:0,他引:1  
采用电子显微镜及图像分析仪,研究了液相线铸造A356铝合金在二次加热过程中的组织变化。结果表明,在固液两相区内,随着加热温度的升高,α相的生长和球化的速度变快。二次加热最佳工艺制度的590℃下保温10min,此时,晶粒平均等级圆直径为38.5μm,晶粒平均圆度为1.92。  相似文献   

20.
针对传统的A356铝合金,添加稀土元素是改善其微观组织并提高力学性能的有效途径。本工作通过示差扫描量热分析(DSC)、X射线衍射(XRD)、扫描电镜(SEM)等分析手段来研究稀土Er对铸态A356铝合金组织和性能的影响。结果表明,稀土元素Er是一种能够显著改善A356合金铸态组织的优良变质剂。Er的加入细化了初生α-Al相,二次枝晶间距降低,枝晶臂直径减小,同时对铸态组织中的共晶Si起到了变质作用。当Er含量达到0.4%(质量分数,下同)时,细化效果最为显著,二次枝晶间距由53.6μm减小到17.5μm,共晶硅形貌也由粗大的板条状转变为短棒或圆粒状。与A356合金相比,添加0.4%Er的合金样品的抗拉强度和伸长率分别提高了15.1%,29.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号