首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在A356铝合金熔体中加入K2TiF6盐,通过熔体搅拌原位反应法制备了Al3Ti/A356铝基复合材料,研究了Al3Ti含量对铝基复合材料显微组织及室温和高温拉伸力学性能的影响。结果表明,Al3Ti/A356复合材料的铸态组织由α-Al、共晶Si和(Al, Si)3Ti相组成。随着K2TiF6盐添加量的增加,(Al, Si)3Ti相也逐渐增多,其形状由大块状和棒状转变为小块状,同时,基体中的共晶Si细化效果也越显著。在生成不同Al3Ti含量的复合材料中,2wt%Al3Ti/A356复合材料的常温拉伸抗拉强度和屈服强度均为最高,分别为179.7 MPa和74.1 MPa。350℃高温拉伸时,6wt%Al3Ti/A356复合材料的抗拉强度和屈服强度分别比基体提高22.1%和12.6%,分别达到66.3 MPa和57.9 MPa,最高抗拉强度达到或超过了一些现役汽车活塞用的铝硅合金,表明Al3Ti/A356复合材料具有作为新型耐热铝合金应用于汽车发动机耐热部件的潜力。   相似文献   

2.
针对传统的A356铝合金,添加稀土元素是改善其微观组织并提高力学性能的有效途径。本工作通过示差扫描量热分析(DSC)、X射线衍射(XRD)、扫描电镜(SEM)等分析手段来研究稀土Er对铸态A356铝合金组织和性能的影响。结果表明,稀土元素Er是一种能够显著改善A356合金铸态组织的优良变质剂。Er的加入细化了初生α-Al相,二次枝晶间距降低,枝晶臂直径减小,同时对铸态组织中的共晶Si起到了变质作用。当Er含量达到0.4%(质量分数,下同)时,细化效果最为显著,二次枝晶间距由53.6μm减小到17.5μm,共晶硅形貌也由粗大的板条状转变为短棒或圆粒状。与A356合金相比,添加0.4%Er的合金样品的抗拉强度和伸长率分别提高了15.1%,29.8%。  相似文献   

3.
Abstract

The effects of microstructural variables, including secondary dendrite arm spacing (SDAS), the size of primary α phase, the aspect ratio of eutectic Si particle and the thickness of eutectic wall structure, on tensile behaviour of A356 cast aluminium alloy, were quantitatively identified using linear regression analysis method. For systematic microstructural control of A356 specimen, directional solidification method was used with different solidification rates of 5, 25, 50 and 100 μm s?1 respectively. The linear regression analysis suggests that each microstructural variable affects tensile strength and tensile elongation of A356 cast aluminium alloy in a similar fashion. The change in tensile behaviour with varying microstructural variables in A356 cast aluminium alloy is discussed based on fractographic and micrographic observations.  相似文献   

4.
The interfacial structure in SiC-particle-reinforced, as-cast and heat-treated magnesium-alloy-matrix composites was investigated using analytical electron microscopy. No extensive chemical reactions were observed between the magnesium and the SiC particles or the SiC and the eutectic phase. However, most of the eutectic phase appeared to nucleate at the surface of the SiC particles. In addition to the lamellar eutectic, a fine eutectic and Mg2Si particles have been identified at the SiC surface using nanoprobe micro-analysis. As with the aluminium base composite, precipitation was observed to take place on dislocations, and dense precipitation was found to occur in the stress fields around the SiC particles. Examination of the fracture surface indicated that the bonding between the SiC/eutectic is stronger than between the SiC/magnesium matrix. Intergranular cracks have been observed both in the fracture surface and also in a polished and etched section. The fracture surface tends to exhibit a more brittle morphology in the composite than is observed in the alloy.  相似文献   

5.
Abstract

Useful properties of eutectic alloys have been found to relate to the presence of granulated discontinuous phase, and its formation is encouraged during solidification; although difficulties are encountered in some alloy systems. In the present paper it is suggested that discontinuous phase granulation can be achieved through either solidification processing or heat treatment. The kinetics of granulation during heat treatment and the factors affecting it have been analysed and examined for eutectic silicon in Al–Si alloys and for graphite in cast irons during heat treatment, using the techniques of high-temperature and quantitative metallography. The concept of combined control of the size and morphology of the discontinuous phase through solidification and heat treatment was developed.

MST/254  相似文献   

6.
The effects of mischmetal, cooling rate and heat treatment on the eutectic Si particle characteristics of A319.1, A356.2 and A413.1 Al–Si casting alloys were investigated and recorded for this study. Mischmetal was added to the alloys in the form of Al–20% mischmetal master alloy to produce four levels of mischmetal addition (0, 2, 4 and 6 wt%). The alloys were also modified with strontium (250 ppm) to study the combined modification effect of Sr and mischmetal at both high and low cooling rates corresponding to dendrite arm spacings of 40 and 120 μm, respectively. The alloys were subjected to solution heat treatment (495 °C/8 h for A319.1 and A413.1 alloys, and 540 °C/8 h for A356.2 alloy) to investigate its effect on the eutectic Si particle morphology.

An optical microscope-image analyzer system was used to measure the characteristics of eutectic Si particles such as area, length, roundness ratio and aspect ratio, in order to monitor the modifying effect of mischmetal, as well as the combined modification effect of mischmetal and Sr. For each alloy sample examined, the Si particle characteristics were measured over an area of 50 fields and the average particle characteristics were thus determined.

The eutectic Si particle measurements revealed that partial modification was obtained with the addition of mischmetal while full modification was achieved with the addition of Sr in the as-cast condition, at both high and low cooling rates. The interaction between Sr and mischmetal was observed to weaken the effectiveness of Sr as a Si particle-modifying agent. This effect was particularly evident at the low cooling rate.

During solution heat treatment, the eutectic Si particles in the non-modified alloys underwent rapid coarsening, otherwise known as Ostwald ripening, whereas those in the Sr-modified alloys exhibited a high spheroidization rate. The coarsening was evidenced by an increase in the thickness of the Si particles, clearly observed in the A356.2 alloy at both cooling rates. In the alloys containing mischmetal, the presence of this mixture of rare earth elements reduced the coarsening of the Si particles slightly.  相似文献   


7.
Abstract

The microstructure of a cast aluminium alloy A356 reinforced with 15 vol.-%SiC particles has been investigated using analytical microscopy. It is shown that the morphology of the silicon phase, as well as that of the Al–Si eutectic structure, which are the features of this alloy system, are dramatically changed by the presence of the SiC particles. Significant effects of grain refinement werefound to occur not only on the primary aluminium grains, but also on the primary and eutectic silicon phases. Twinning and dislocations were often observed within that silicon phase which was situated adjacent to the SiC particles. Microcracks were also observed at the SiC/silicon interface. The presence of such microcracks suggests that a stress concentration had developed at the silicon/SiC particle interfaces, probably as a result of the thermal expansion mismatch occurring between the silicon and SiC particles. The microcracks which consequently develop are formed as a result of the poor silicon–SiC particle bonding. Other intermetallics, notably Mg2Si and FeSiAl5, which exhibit cubic and tetragonal symmetries respectively, were also identified as being present in the microstructure.

MST/1460  相似文献   

8.
The influences of deformation, heat treatment temperature and holding time on morphology and size distribution of Si containing eutectic phases of Thixocast Al-7Si-0.4 Mg alloy were investigated. The novel thermo-mechanical treatment consisted of initial cold working practice followed by a solution heat treatment at 540 °C for durations ranging from 2 min to 120 min followed by water quenching. Optical and scanning electron microscopes were used to study the influence of process parameters on microstructure evolution. Also, final mechanical properties were investigated using hardness test. The results indicate that, under appropriate conditions it is possible to achieve an ultrafine grain microstructure with the eutectic Si fibers fragmented and spheroidized in the entire microstructure. It was also found that, an agglomeration of sphrodized particles occurs and is governed by Ostwald ripening mechanism.  相似文献   

9.
In the present investigation, the microstructural and mechanical properties study of A356 alloy have been discussed. The microstructural aspect of cast A356 alloy employed in the present study is strongly dependent on the grain refinement (Ti and B) and modification (Sr). The mechanical properties such as PS, UTS, %E, %R, YM and VHN have been investigated. This paper deals with the combined effect of grain refinement and modification, which improves the overall mechanical properties of the alloy. It is also a well-known fact that the mechanical properties of cast A356 alloy were improved by subjecting suitable melt treatment such as grain refinement, modification and mould vibration, etc. The quality of castings and their properties can be achieved by refining of α-Al dendrites in A356 alloy by means of the addition of elements such as Ti and B which reduces the size of α-Al dendrites, which otherwise solidifies with coarse columnar α-Al dendritic structure. In addition, modification is normally adopted to achieve improved mechanical properties. Metallographic studies reveal that the structure changes from coarse columnar dendrites to fine equiaxed ones on the addition of grain refiner and further, plate like eutectic silicon to fine particles on addition of 0.20% of Al–10Sr modifier. The present result shows that a reduction in the size of α-Al dendrites, modification of eutectic Si and improvement in the mechanical properties were observed with the addition of grain refiner Al–3Ti, Al–3B and modifier Al–10Sr either individual addition or in combination. The change in the microstructure from coarse columnar α-Al dendrites to fine equiaxed dendrites and plate like eutectic silicon to rounded particles leads to improved mechanical properties.  相似文献   

10.
采用电弧熔炼法制备了 Nb220Si210Mo、Nb220Si210Mo23M (M = Cr , Al , Ti) (原子分数) 四种 Nb2Mo2Si基超高温合金。利用 SEM、EDS、XRD等实验技术对铸造合金的相组成与组织形态进行了观察和分析。Nb220Si210Mo 合金由铌固溶体 (Nb SS) 与βNb 5Si 3化合物两相构成 , 其铸造组织包含大量片层状共晶 (Nb SS 2βNb 5Si 3) 组织。少量合金元素 Cr (3 at %) 能够改变 Nb220Si210Mo 合金的相平衡关系 , Nb220Si210Mo23Cr 的铸造组织中不仅存在 Nb SS和βNb 5Si 3 , 而且还出现少量 Cr 2Nb相 ; 而添加合金元素 Al、Ti (3 at %) 并不改变 Nb220Si210Mo 合金的相平衡关系。添加 Cr 使 Nb SS 2 βNb 5Si 3共晶组织失去了平直片层特征 ; Al 有利于共晶组织中片层状共晶形成 ; 添加 Ti使共晶组织呈现羽毛状特征。合金化使 Nb与βNb 5Si 3的晶格常数发生变化 : Nb的晶格常数均变小; Nb220Si210Mo23Cr合金中βNb 5Si 3的 c/ a值减小 , 其它 3种合金中βNb 5Si 3的 c/ a值增大。  相似文献   

11.
Abstract

The microstructural and wear properties of spray formed Al–6.5Si, Al–18Si and Al–18Si–5Fe–1.5Cu (wt-%) alloys have been investigated. The microstructure of the Al–6.5Si alloy exhibits the equiaxed grain morphology of the primary α-Al phase with eutectic Si at the grain boundaries. The size of the primary Si particulates in the Al–18Si alloy varied from 3 to 8 μm embedded in the eutectic matrix. Complex intermetallic phases such as β-Al5 SiFe and δAl4 Si2 Fe are observed to co-exist with primary Si in the spray formed Al–18Si–5Fe–1.5Cu alloy system. The periphery of the preforms invariably showed pre-solidified particles with a large amount of interstitial pores. An extrusion ratio of 6 : 1 for these alloys led to drastic porosity reduction and extensive breaking of second phase particles. These microstructural features showed distinct variation in the wear behaviour and the coefficient of friction of the alloys. The Al–18Si–5Fe–1.5Cu alloy shows better wear resistance compared with the other two alloys, particularly at higher loads. The coefficient of friction shows a dependence upon the applied load. However, this becomes steady at higher loads. The wear behaviour of these alloys is discussed in light of the morphology of debris particles as well as that of the worn surfaces.  相似文献   

12.
The effects of thermomechanical processing (TMP) parameters on the microstructure evolution and final mechanical properties of an unmodified A356 Al alloy have been investigated. The evaluation of mechanical properties was carried out using shear punch testing (SPT) method. The applied TMP cycles encompassed a set of isothermal hot compression tests in the temperature range of 420–540 °C under various strain rates of 0.001, 0.01 and 0.1 s−1. The results indicate that increasing both the TMP temperature and strain rate has enhanced the room temperature strength of the experimental alloy. Furthermore, while ductility follows a similar improving trend with increasing the TMP temperature, it is deteriorated by increasing the strain rate. The obtained results are reasoned debating the role of solute atoms and the changes in Si particles shape and size. The present work also made use of quality index (Q) to measure the mechanical performance of the TMPed unmodified A356 Al alloy.  相似文献   

13.
The semi-solid microstructure of commercial A390 (Al—17%Si—4.5%Cu—0.5%Mg) hypereutectic Al–Si alloy with an addition of 10% Mg was investigated for two different processing routes: 1) rheocasting after stirring with rotation speed of 260 rpm and 2) partial remelting after fast cooling in a steel mould. The results show that the morphology of α-Al grains becomes globular during isothermal holding time for both cases. However, at the same isothermal condition, the size of the α-Al phase particles for rheocast samples are larger and their morphology are more globular than for the samples examined after the partial remelting process. The microstuctural evolution, size and shape of the primary Mg2Si as well as the silicon particles during isothermal ageing in the semi-solid region was also investigated for the two processing conditions.  相似文献   

14.
Eutectic composition Cu-Ag alloy thin films were prepared by co-deposition at room temperature onto oxidized Si substrates by thermal evaporation. Morphological development, structure and phase state of the films were investigated by transmission electron microscopy. The films possess fibre morphology 10-30 nm in diameter and strong <111> texture is present. The fibres are nanocrystalline composed of 2-3 nm size zones of Cu and Ag rich solid solution phases and a model for morphological development and phase separation is described. In the early stages of growth phase separation occurs by nucleation in melted islands and a eutectic of randomly oriented crystallites forms. In later stages of growth the phase separation takes place by spinodal decomposition. It results in a strain stabilized unique morphology corresponding to an intermediate stage of phase separation.  相似文献   

15.
为弥补Al-10Sr中间合金对A356铝合金变质处理的不足,采用自制的Al-5Ti-1B-1RE中间合金与A1-10Sr中间合金对A356铝合金进行动态复合细化变质处理,研究变质处理后合金的显微组织,并与理论计算结果进行了比较。结果表明:采用JJ-1型精密增力电动搅拌器对熔体进行强力搅拌、振动,动态复合细化变质不仅能使共晶硅相由粗大的板片状转变为细密的颗粒状,并在α-Al边界均匀析出,而且使α-Al相明显细化,力学性能显著提高,与约翰逊-梅尔方程理论对组织晶粒尺寸控制研究结果相一致;同时A356铝合金熔体吸气倾向显著减轻,与热力学近似计算方程和斯托克斯定律对除气机制进行定量计算研究结果相一致。  相似文献   

16.
Mechanical fatigue tests were conducted on uniaxial specimens machined from a cast A356-T6 aluminium alloy plate at total strain amplitudes ranging from 0.1 to 0.8% ( R = − 1). The cast alloy contains strontium-modified silicon particles (vol. fract. ~6%) within an Al–Si eutectic, dispersed α intermetallic particles, Al15 (Fe,Mn)3 Si2 (vol. fract. ~1%), and an extremely low overall volume fraction of porosity (0.01%). During the initial stages of the fatigue process, we observed that a small semicircular fatigue crack propagated almost exclusively through the Al–1% Si dendrite cells. The small crack avoided the modified silicon particles in the Al–Si eutectic and only propagated along the α intermetallics if they were directly in line with the crack plane. These growth characteristics were observed up to a maximum stress intensity factor of ~ K trmax = 7.0 MPa m1/2 (maximum plastic zone size of 96 μm). When the fatigue crack propagated with a maximum crack tip driving force above 7.0 MPa m1/2 the larger fatigue crack tip process zone fractured an increased number of silicon particles and α intermetallics ahead of the crack tip, and the crack subsequently propagated preferentially through the damaged regions. As the crack tip driving force further increased, the area fraction of damaged α intermetallics and silicon particles on the fatigue fracture surfaces also increased. The final stage of failure (fast fracture) was observed to occur almost exclusively through the Al–Si eutectic regions and the α intermetallics.  相似文献   

17.
Abstract

Microstructural evolution in Ti - 6.8Al - 3.2Mo - 1.8Zr - 0.3Si alloy during a newly designed thermomechanical schedule has been systematically studied with the aim of obtaining a suitable microstructure for superplastic forming. The schedule involves prior processing in the β phase field and subsequent rolling in the (α + β) phase field. In all experiments the starting material was thermally or thermomechanically treated in the β phase field and subsequently quenched in order to produce a martensitic structure. The morphology of the primary α in material for hot rolling could be substantially altered from that obtained with the conventional (α + β) processing schedule of two phase titanium alloys. Prior β processed microstructure, (α + β) rolling temperature, and deformation were found to influence the α phase morphology in the alloy. The effect of subsequent annealing in the (α + β) phase field on microstructural stability has been examined. The results show that the proposed thermomechanical processing schedule provides a relatively wide temperature - strain 'processing window' in β and (α + β) phase fields over which a fine grain (< 5 μm) equiaxed α structure can be obtained in Ti - 6.8Al - 3.2Mo - 1.8Zr - 0.3Si alloy.  相似文献   

18.
The effect of Sc on the microstructure and mechanical properties of Al–Si–Mg–Cu–Ti alloy was investigated. Results obtained in this research indicate that, with increasing Sc content, the microstructure of the investigated alloys exhibits finer equiaxed dendrites with rounded edges and the morphology of the eutectic Si shows a complete transition from a coarse needle-like structure to a fine fibrous structure upon modification of eutectic Si. Subsequent T6 heat treatment had further induced the precipitation of nano-scaled secondary Al3(Sc, Ti) phase, as well as spheroidisation of eutectic Si. Combined with T6 heat treatment, the ultimate tensile strength, yield strength, percentage elongation and hardness were achieved in 0.20?wt-% Sc-modified alloy.  相似文献   

19.
Three‐dimensional morphology of eutectic silicon in as‐cast Al‐20 wt% Si alloys with ultrasonic treatment above liquidus has been investigated in this paper. The results show that ultrasonic treatment above liquidus could not refine the primary silicon phase very well, but is capable of modifying the morphology of eutectic silicon. The fracture of eutectic silicon occurred resulting in both huge reduction of silicon grain sizes and changes of morphology from large plate‐like to interconnected thin flake and coral‐like. The evolution mechanisms of the eutectic silicon morphology in Al‐20 wt% Si alloys with ultrasonic treatment were also preliminarily discussed.  相似文献   

20.
深过冷Fe-B-Si共晶合金凝固组织纳米化机制探讨   总被引:3,自引:0,他引:3  
采用深过冷及深过冷加水淬的方法,成功地制备了样品直径为16mm,高为15mm,组织中晶粒平均尺寸小于120nm的Fe76B12Si12合金块体纳米材料。理论分析与实际计算结果表明:该合金凝固组织纳米化的主要原因在于,其共晶两相的生长速度小、组织粗化速率小、溶质平衡分配系数低以及具有相对较低的熔化焓;深过冷Fe-B-Si合金块体纳米软磁材料制备的理想条件是:获得超过冷、选择主要由溶质扩散控制生长的共晶合金成分、获得Fe2B(Si)相为完全准球状形态的二次粒化非规则共晶组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号