共查询到20条相似文献,搜索用时 21 毫秒
1.
The stability of the electrical, optical and mechanical properties of sputtered zinc oxide (ZnO) thin films with resistivities from 10?2 to 10?4 ωcm were investigated. No significant changes in these properties are observed for ZnO films exposed to air at room temperature for 10 months. A change in the electrical resistance of the ZnO films with temperature up to 400 °C is observed in various ambients such as vacuum, inert gases and air. After heat treatment in these ambients at 400 °C, the resistivity of the films increased by one to ten orders of magnitude. The increased resistivity can be returned to the resistivity of the virgin state, within one order of magnitude, by heat treatment in a hydrogen ambient at temperatures near 400 °C. For practical use of ZnO films at high temperatures, the increase in the resistivity might become a disadvantage for ZnO transparent electrodes fabricated by r.f. magnetron sputtering. 相似文献
2.
In this study, transparent conducting Al-doped zinc oxide (AZO) films with a thickness of 150 nm were prepared on Corning glass substrates by the RF magnetron sputtering with using a ZnO:Al (Al2O3: 2 wt.%) target at room temperature. This study investigated the effects of the post-annealing temperature and the annealing ambient on the structural, electrical and optical properties of the AZO films. The films were annealed at temperatures ranging from 300 to 500 °C in steps of 100 °C by using rapid thermal annealing equipment in oxygen. The thicknesses of the films were observed by field emission scanning electron microscopy (FE-SEM); their grain size was calculated from the X-ray diffraction (XRD) spectra using the Scherrer equation. XRD measurements showed the AZO films to be crystallized with strong (002) orientation as substrate temperature increases over 300 °C. Their electrical properties were investigated by using the Hall measurement and their transmittance was measured by UV-vis spectrometry. The AZO film annealed at the 500 °C in oxygen showed an electrical resistivity of 2.24 × 10− 3 Ω cm and a very high transmittance of 93.5% which were decreased about one order and increased about 9.4%, respectively, compared with as-deposited AZO film. 相似文献
3.
Hua-fu Zhang Rui-jin Liu Han-fa Liu Cheng-xin Lei Dong-tai Feng Chang-Kun Yuan 《Materials Letters》2010,64(5):605-607
Mn-doped zinc oxide (ZnO:Mn) thin films with low resistivity and relatively high transparency were firstly prepared on glass substrate by direct current (DC) magnetron sputtering at room temperature. Influence of film thickness on the properties of ZnO:Mn films was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. As the thickness increases from 144 to 479 nm, the crystallite size increases while the electrical resistivity decreases. However, as the thickness increases from 479 to 783 nm, the crystallite size decreases and the electrical resistivity increases. When film thickness is 479 nm, the deposited films have the lowest resistivity of 2.1 × 10− 4 Ω cm and a relatively high transmittance of above 84% in the visible range. 相似文献
4.
Jun-ichi Nomoto Tomoyasu Hirano Toshihiro Miyata Tadatsugu Minami 《Thin solid films》2011,520(5):1400
In order to determine the influence of different types of magnetron sputtering (MS) depositions on the characteristics of Al-doped ZnO (AZO) thin films appropriate for applications as transparent electrodes in thin-film solar cells, transparent conducting AZO thin films were prepared on glass substrates at 200 °C by direct current (dc) magnetron sputtering (dc-MS), radio frequency (rf)-MS and rf power superimposed dc-MS (rf + dc-MS) depositions using an MS apparatus with the same AZO target. AZO thin films prepared by an rf + dc-MS deposition exhibited both a higher deposition rate than that found with rf-MS depositions and a lower resistivity or higher Hall mobility than those found with dc-MS. The lower dc sputter voltage featured in rf-MS and rf ± dc-MS depositions, producing smoother surface morphology and better crystallinity than obtained with dc-MS depositions. The light scattering characteristics of surface-textured AZO thin films prepared by various types of MS depositions were evaluated by observing the surface texture and measuring the optical transmittance and the diffusive component; wet-chemical etching of the thin film surface was performed in a 0.1% HCl solution. The obtainable haze property in the range from visible to near infrared in AZO films prepared by an rf + dc-MS deposition was markedly better than that obtained with dc-MS depositions. 相似文献
5.
Highly conducting and transparent thin films of tungsten-doped ZnO (ZnO:W) were prepared on glass substrates by direct current (DC) magnetron sputtering at low temperature. The effect of film thickness on the structural, electrical and optical properties of ZnO:W films was investigated. All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The electrical resistivity first decreases with film thickness, and then increases with further increase in film thickness. The lowest resistivity achieved was 6.97 × 10−4 Ω cm for a thickness of 332 nm with a Hall mobility of 6.7 cm2 V−1 s−1 and a carrier concentration of 1.35 × 1021 cm−3. However, the average transmittance of the films does not change much with an increase in film thickness, and all the deposited films show a high transmittance of approximately 90% in the visible range. 相似文献
6.
M. F. Meléndrez K. Hanks Francis Leonard-Deepak F. Solis-Pomar E. Martinez-Guerra E. Pérez-Tijerina M. José-Yacaman 《Journal of Materials Science》2012,47(4):2025-2032
The fabrication of ZnO (80 nm) thin film was achieved by hybrid atomic layer deposition (ALD) to prevent the reaction between
the reactants and conductive layer of the substrates. ZnO nanorods (ZnO-NRs) growth over the substrates was performed by wet
chemical procedure in which Zn(NO3)2 and hexamethylenetetramine were used as the precursors. HR-TEM, SAED, FE-SEM, X-ray diffraction (XRD), and UV–Vis spectroscopy
were employed to characterize the ZnO-NRs samples on the substrates. XRD and HR-TEM analyses confirmed that the ZnO nanorod
structure is hexagonal wurtzite type with growth in the [0001] direction. Length and thickness of the ZnO-NRs ranged between
45 and 90 nm and 480 and 600 nm, respectively. It was observed that the growth rate of NRs in [0001] direction is 10 times
higher than in [1000] direction. The growth mechanism and resulted dimensions of nanorods are function of the synthesis parameters
(in hybrid ALD process) such as reaction time, temperature, precursor molar ratio, and thickness of ZnO film. 相似文献
7.
Fluorine-doped ZnO transparent conductive thin films were successfully deposited on glass substrate by radio frequency magnetron sputtering of ZnF2. The effects of rapid thermal annealing in vacuum on the optical and electrical properties of fluorine-doped ZnO thin films have been investigated. X-ray diffraction spectra indicate that no fluorine compounds, such as ZnF2, except ZnO were observed. The specimen annealed at 500 °C has the lowest resistivity of 6.65 × 10? 4 Ω cm, the highest carrier concentration of 1.95 × 1021 cm? 3, and the highest energy band gap of 3.46 eV. The average transmittance in the visible region of the F-doped ZnO thin films as-deposited and annealed is over 90%. 相似文献
8.
Fluorine-doped ZnO transparent conducting thin films were prepared by radio frequency magnetron sputtering at 150 °C on glass substrate. Thermal annealing in vacuum was used to improve the optical and electrical properties of the films. X-ray patterns indicated that (002) preferential growth was observed. The grain size of F-doped ZnO thin films calculated from the full-width at half-maximum of the (002) diffraction lines is in the range of 18-24 nm. The average transmittance in visible region is over 90% for all specimens. The specimen annealed at 400 °C has the lowest resistivity of 1.86 × 10− 3 Ω cm, the highest mobility of 8.9 cm2 V− 1 s− 1, the highest carrier concentration of 3.78 × 1020 cm− 3, and the highest energy band gap of 3.40 eV. The resistivity of F-doped ZnO thin films increases gradually to 4.58 × 10− 3 Ω cm after annealed at 400 °C for 4 h. The variation of the resistivity is slight. 相似文献
9.
在不同的衬底温度下,采用磁控溅射方法在蓝宝石(0001)衬底上制备了外延生长的ZnO薄膜.采用原子力显微镜(AFM)、X射线衍射仪(XRD)、可见-紫外分光光度计系统研究了衬底温度对ZnO薄膜微观结构和光学特性的影响.AFM结果表明在不同村底温度制备的ZnO薄膜具有较为均匀的ZnO晶粒,且晶粒的尺寸随衬底温度的增加逐渐增大.XRD结果显示不同温度生长的ZnO薄膜均为外延生长,400℃生长的薄膜具有最好的结晶质量;光学透射谱显示在370nm附近均出现一个较陡的吸收边,表明制备的ZnO薄膜具有较高的质量,其光学能带隙随着衬底温度的增加而减小. 相似文献
10.
Cheemadan Saheer Kumar M. C. Santhosh 《Journal of Materials Science: Materials in Electronics》2022,33(19):15638-15651
Journal of Materials Science: Materials in Electronics - The present work execute the deposition of CdO:ZnO composite thin films with varying compositions of 90:10, 80:20, 70:30, and 60:40... 相似文献
11.
Li-doped p-type ZnO thin films were grown by using radio frequency magnetron sputtering. In our experiment, ZnO targets were fabricated by using the Li-doped ZnO powders that had been synthesized by glycine (urea)-nitrate combustion process. The structural characteristics of ZnO thin films were examined by XRD and SEM. The results showed that ZnO films possess a good crystalline with c-axis orientation, uniform thickness and dense surface. Current-voltage properties of p-ZnO:Li/n-Si structure had been examined in an effort to delineate the carrier type behavior in ZnO semiconductor. p-ZnO:Li/n-Si heterojunctions displayed rectifying behavior. As a result I-V measurements exhibited a polarity consistent with the Li-doped ZnO being p-type. 相似文献
12.
J.-H. Kang D.W. Kim J.H. KimY.S. Lim M.-H. LeeW.-S. Seo H.J. ChoiK.H. Seo M.G. Park 《Thin solid films》2011,519(20):6840-6843
A study of the thermal stability of transparent conducting ZnO thin film in air is reported. By depositing a thin ZnO overlayer (~ 10 nm) on aluminum and gallium-codoped ZnO thin film (AGZO), the thermal stability of the AGZO thin film could be significantly improved. Electrical and structural characterizations of the AGZO thin films with and without the overlayer were performed and the mechanism of the enhanced thermal stability by the overlayer was proposed. 相似文献
13.
Development of Ga-doped ZnO transparent electrodes for liquid crystal display panels 总被引:1,自引:0,他引:1
N. Yamamoto H. MakinoS. Osone A. UjiharaT. Ito H. HokariT. Maruyama T. Yamamoto 《Thin solid films》2012,520(12):4131-4138
Liquid crystal displays (LCDs) with Ga-doped ZnO (GZO) transparent electrodes on RGB color filters were fabricated to demonstrate the feasibility of using this new material as an alternative to indium tin oxide (ITO) electrodes. The process flow for fabricating LCDs with GZO electrodes was entirely compatible with that for commercially available LCDs using ITO electrodes. Concurrently, photolithography processing and wet-chemical etching techniques for the formation of GZO transparent electrodes on thin film transistor (TFT) arrays in LCD panels was developed. Fine-patterns of GZO with 2-μm line widths were successfully formed using lithography and wet -etching technology with a weakly acidic etchant of pH 5.5-6.8. 相似文献
14.
Effect of target properties on transparent conducting impurity-doped ZnO thin films deposited by DC magnetron sputtering 总被引:1,自引:0,他引:1
Tadatsugu Minami 《Thin solid films》2010,519(1):385-1406
For the purpose of using transparent conducting impurity-doped ZnO thin films in liquid crystal display (LCD) applications, the relationship between the properties of dc magnetron sputtering (dc-MS) deposited thin films and the properties of the oxide targets used to produce them is investigated. Both Al-doped and Ga-doped ZnO (AZO and GZO) thin films were deposited on glass substrates using a dc-MS apparatus with various high-density sintered AZO or GZO disk targets (diameter of about 150 mm); the target and substrate were both fixed during the depositions. Using targets with a lower resistivity results in attaining more highly stable dc-MS depositions with higher deposition rates and lower arcing. In addition, dc-MS depositions using targets with a lower resistivity produced improvements in resistivity distribution on the substrate surface. It was found that the oxygen content in deposited thin films decreased as the oxygen content of the target used in the deposition was decreased. As a result, the dc-MS deposition of transparent conducting impurity-doped ZnO thin films suitable for LCD applications requires the preparation of significantly reduced AZO and GZO targets with low oxygen content. 相似文献
15.
Jong Hoon Kim 《Thin solid films》2008,516(7):1330-1333
Ga doped ZnO (GZO) thin films were prepared by rf-magnetron sputtering on glass substrate for window heater applications. Electrical and optical properties of these films were analyzed in order to investigate on substrate temperature and rf power dependencies. High quality GZO films with a resistivity of 1.30 × 10− 4 Ω cm and a transparency above 90% in the visible range were able to be formed. GZO films have been patterned on glass substrate as a line heater. This GZO line heater showed the rapid heat radiation property from room temperature to 90 °C for 22 s at the applied voltage of 42 V. These results could provide a possibility to use GZO as effective transparent heaters. 相似文献
16.
Aluminum-doped zinc oxide films (ZnO:Al) were deposited on Si wafers and glass substrates by dc magnetron sputtering from a ZnO target mixed with 2 wt% Al2O3 for photovoltaic films. The effect of base pressure, additional oxygen, and substrate temperature were studied in detail. By dc magnetron sputtering at room temperature, the resistivity and the average transmittance in visible range was 2.3 × 10−3 Ω cm and 77.3%, respectively. And these were improved up to 3.3 × 10−4 Ω cm and 86% at the substrate temperature of 400 °C by high deposition rate and low impurity ambient. The mobility and the carrier concentration were improved by the increased preferred orientation of (002) plane and grain size of film with increasing deposition temperature. This advanced AZO film with good resistivity and transmittance can be expected as the front TCO of thin film solar cells. 相似文献
17.
The relationship between two techniques developed for improving the resistivity distribution on the substrate surface in transparent conducting Al-doped ZnO (AZO) thin films prepared at a temperature of 200 °C by dc magnetron sputtering depositions (dc-MSD) using various sintered AZO targets has been investigated. One improvement method superimposes an rf component onto the dc-MSD (rf + dc-MSD). The other improvement method uses conventional dc-MSD with a low resistivity AZO target prepared under optimized conditions. An improvement of resistivity distribution resulted from a decrease in the resistivity of targets used in the preparation of AZO thin films by dc-MSD either with or without superimposing rf power. However, the resistivity distribution of AZO thin films resulting from depositions using rf-superimposed dc-MSD with lower-resistivity targets was not significantly improved over that of AZO thin films prepared by conventional dc-MSD using targets with the same low resistivities. The use of rf superimposition only resulted in improved resistivity distribution in thin films when the AZO targets had a resistivity higher than around 1 × 10− 3 Ω cm. It should be noted that sintered AZO targets optimized for the preparation of AZO thin films with lower resistivity as well as more uniform resistivity distribution on the substrate surface tended to exhibit a lower resistivity. 相似文献
18.
《材料科学技术学报》2020,(2)
Oxide/metal/oxide(OMO) and its derivatives are considered as the promising alternatives to achieve high performance transparent electrodes(TEs). The percolation thickness and conductivity of the metal layer are very crucial for the optoelectrical properties of any OMO TE. Here, we report a facile method to promote the initial growth of the metal layer by improving the interfacial wettability between O-M interface. By subsequently combined with high-quality zinc oxide(ZnO) films, ZnO/Cu/ZnO TEs that have not only low sheet resistance(19.3/sq) but also enhanced thermal stability can be obtained, with a performance of an average transmittance of 84.4% over the visible spectral range of 400–800 nm. 相似文献
19.
Novel sublayer surface treatments were investigated to improve the conductivity of aluminum-doped zinc oxide (ZnO:Al) fabricated by using dc magnetron sputtering on a glass substrate. Introducing artificial minute flaws on the surface of glass substrates enhanced the crystallinity of ZnO:Al films and decreased the resistivity accompanying the increase of electron mobility. Combination of the surface treatment and sputter beam control, i.e., interruption of high-energy oxygen with shadow masks, further reduced the resistivity of the film to 3.7 × 10− 4 Ω cm (thickness 70 nm). 相似文献
20.
Aluminum-doped ZnO (AZO) thin-films were deposited with various RF powers at room temperature by radio frequency (RF) magnetron sputtering method. The electrical properties of the AZO film were improved with the increasing RF power. These results can be explained by the improvement of the crystallinity in the AZO film. We fabricated the organic thin-film transistor (OTFT) of the bottom gate structure using pentacene active and poly-4-vinyl phenol gate dielectric layers on the indium tin oxide gate electrode, and estimated the device properties of the OTFTs including drain current-drain voltage (ID-VD), drain current-gate voltage (ID-VG), threshold voltage (VT), on/off ratio and field effect mobility. The AZO film that grown at 160 W RF power exhibited low resistivity (1.54 × 10− 3 Ω·cm), high crystallinity and uniform surface morphology. The pentacene thin-film transistor using the AZO film that's fabricated at 160 W RF power exhibited good device performance such as the mobility of 0.94 cm2/V s and the on/off ratio of ~ 105. Consequently, the performance of the OTFT such as larger field-effect carrier mobility was determined the conductivity of the AZO source/drain (S/D) electrode. AZO films prepared at room temperature by the sputtering method are suitable for the S/D electrodes in the OTFTs. 相似文献