首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead-based piezoelectric ceramics typically require sintering temperatures higher than 1000°C at which significant lead loss can occur. Here, we report a double precursor solution coating (PSC) method for fabricating low-temperature sinterable polycrystalline [Pb(Mg1/3Nb2/3)O3]0.63-[PbTiO3]0.37 (PMN–PT) ceramics. In this method, submicrometer crystalline PMN powder was first obtained by dispersing Mg(OH)2-coated Nb2O5 particles in a lead acetate/ethylene glycol solution (first PSC), followed by calcination at 800°C. The crystalline PMN powder was subsequently suspended in a PT precursor solution containing lead acetate and titanium isopropoxide in ethylene glycol to form the PMN–PT precursor powder (second PSC) that could be sintered at a temperature as low as 900°C. The resultant d 33 for samples sintered at 900°, 1000°, and 1100°C for 2 h were 600, 620, and 700 pm/V, respectively, comparable with the known value. We attributed the low sintering temperature to the reactive sintering nature of the present PMN–PT precursor powder. The reaction between the nanosize PT and the submicrometer-size PMN occurred roughly in the same temperature range as the densification, 850°–900°C, thereby significantly accelerating the sintering process. The present PSC technique is very general and should be readily applicable to other multicomponent systems.  相似文献   

2.
In this study, the effect of SiO2 doping on the sintering behavior, microstructure, and dielectric properties of BaTiO3-based ceramics was investigated. Silica was added to (Ba0.96Ca0.04)(Ti0.85Zr0.15)O3 (BCTZ) powder prepared using the solid-state method. SiO2-doped BCTZ ceramics with a high density and a uniform grain size were obtained and sintered at 1220°C in a reducing atmosphere. A second phase (BaTiSiO5) existed in samples when SiO2 was added in excess of 1%. The amount of the second phases was observed to increase as the number of SiO2 additives increased. It was found that BCTZ ceramics sintered with SiO2 are helpful in reducing the sintering temperature for a typical thick film and MLCC applications. However, there were disadvantageous effects on the dielectric properties with mere addition of SiO2 addition (3% and 5%) due to higher formation of BaTiSiO5. Doping with a small amount of silica can improve the sintering and dielectric properties of BCTZ ceramics. In addition, to understand the effect of the BaTiSiO5 phase on the dielectric properties of BCTZ ceramics, the BaTiSiO5 composition was synthesized from individual BaCO3, TiO2, and SiO2 powders using conventional solid-state methods. X-ray diffraction results show the presence of mainly the crystalline phase, BaTiSiO5, in the sintered ceramics.  相似文献   

3.
TiN-coated Si3N4 particles were prepared by depositing TiO2 on the Si3N4 surfaces from Ti(O- i -C3H7)4 solution, the TiO2 being formed by controlled hydrolysis, then subsequently nitrided with NH3 gas. A homogeneous TiO2 coating was achieved by heating a Si3N4 suspension containing 1.0 vol% H2O with the precursor at 40°C. Nitridation successfully produced Si3N4 particles coated with 10–20 nm TiN particles. Spark plasma sintering of these TiN/Si3N4 particles at 1600°C yielded composite ceramics with a relative density of 96% at 25 vol% TiN and an electrical resistivity of 10−3Ω·cm in compositions of 17.5 and 25 vol% TiN/Si3N4, making these ceramics suitable for electric discharge machining.  相似文献   

4.
Low-thermal-expansion ceramics having arbitrary thermal expansion coefficients were synthesized from homogeneous solid solutions in the system KZr2(PO4)3─KTi2(PO4)3 (KZP–KTP). Dense and strong ceramics were fabricated by sintering at 1100° to 1200°C with 2 wt% MgO. The thermal expansion coefficient increased from 0 to +3 × 10−6/°C with increasing x in KZr2 − xTix (PO4)3 (KZTP). In addition, a functionally gradient material with respect to thermal expansion was prepared by forming a series of KZTP solid solutions in a single ceramic body. By heating a pile of KZP and KTP ceramics in contact with each other, KZP and KTP bonded together to form a KZTP gradient solid solution near the interface.  相似文献   

5.
Highly textured Bi3NbTiO9 ceramics are fabricated by normal sintering from molten salt-synthesized plate-like crystallites. Fine Bi3NbTiO9 plate-like crystallites (∼1 μm) not only facilitate the densification, but also enhance texture in Bi3NbTiO9 ceramics. Weak-agglomerated platelets exhibit higher sinterability and can be densified at a temperature as low as 1000°C, which is about 100°C lower than that of equiaxed powders prepared by directly calcining Bi3NbTiO9 precursor. Meanwhile, the orientation degree of textured Bi3NbTiO9 ceramics increases with sintering temperature. Highly oriented Bi3NbTiO9 (orientation degree of ∼0.91) ceramic with a relative density of ∼92% is obtained at 1150°C. Because of the oriented grain microstructure, textured Bi3NbTiO9 ceramic exhibits anisotropic electrical properties.  相似文献   

6.
The 0.95(Na0.5K0.5)NbO3–0.05SrTiO3 (0.95NKN–0.05ST) ceramics formed in this study had a porous microstructure with small grains and low piezoelectric properties due to their low density. However, when a small amount of Na2O was intentionally subtracted from the 0.95NKN–0.05ST ceramics, a liquid phase was formed, which led to increased density and grain size. Piezoelectric properties were also improved for the Na2O-subtracted 0.95NKN–0.05ST ceramics. The increased density and grain size were responsible for the enhancement of the piezoelectric properties. In particular, the 0.95(Na0.49K0.5)NbO2.995–0.05ST ceramics showed high piezoelectric properties of d 33=220, k p=0.4, Q m=72, and ɛ3To=1447, thereby demonstrating their promising potential as a candidate material for application to lead-free piezoelectric ceramics.  相似文献   

7.
Textured 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 (NBT–6BT) ceramics were fabricated by templated grain growth (TGG) using anisotropically shaped Na0.5Bi0.5TiO3 (NBT) templates. Platelet NBT was synthesized by the topochemical technique, using precursor Na0.5Bi4.5Ti4O15 (NBIT). The NBT particles have an average length of 10–15 μm and a thickness of 1 μm, which are suitable templates for obtaining textured ceramics (especially NBT-based ceramics) by the TGG process. This study revealed that the NBT templates are effective in inducing grain orientation in NBT–6BT ceramics. For NBT–6BT ceramics textured with 5 vol% NBT templates, a Lotgering factor of 0.87 and a d 33 of 299 pC/N are given.  相似文献   

8.
We report here the fabrication of transparent Sc2O3 ceramics via vacuum sintering. The starting Sc2O3 powders are pyrolyzed from a basic sulfate precursor (Sc(OH)2.6(SO4)0.2·H2O) precipitated from scandium sulfate solution with hexamethylenetetramine as the precipitant. Thermal decomposition behavior of the precursor is studied via differential thermal analysis/thermogravimetry, Fourier transform infrared spectroscopy, X-ray diffractometry, and elemental analysis. Sinterability of the Sc2O3 powders is studied via dilatometry. Microstructure evolution of the ceramic during sintering is investigated via field emission scanning electron microscopy. The best calcination temperature for the precursor is 1100°C, at which the resultant Sc2O3 powder is ultrafine (∼85 nm), well dispersed, and almost free from residual sulfur contamination. With this reactive powder, transparent Sc2O3 ceramics having an average grain size of ∼9 μm and showing a visible wavelength transmittance of ∼60–62% (∼76% of that of Sc2O3 single crystal) have been fabricated via vacuum sintering at a relatively low temperature of 1700°C for 4 h.  相似文献   

9.
Lead-free potassium sodium niobate-based piezoelectric ceramics (1− x )(Na0.5K0.5)NbO3– x BiScO3 (KNN–BS) ( x =0∼0.05) have been prepared by an ordinary sintering process. Single perovskite phase of KNN–BS exhibits an orthorhombic symmetry at x <0.015 and pseudocubic symmetry at x >0.02, separating by a MPB at 0.015≤ x ≤0.02. Piezoelectric and ferroelectric properties are significantly enhanced in the MPB, which are as follows: piezoelectric constant d 33=203 pC/N, planar coupling coefficient k p=0.36, remnant polarization P r=24.4 μC/cm2. These solid solution ceramics look promising as a potential lead-free candidate materials.  相似文献   

10.
Micron-scale platelet barium titanate was synthesized using a twostep molten salt and topochemical technique. Plate-like BaBi4Ti4O15 was first synthesized as a precursor by molten salt synthesis. Then, Bi3+ in the precursor was replaced by Ba2+ and formed perovskite-structure BaTiO3 through a topochemical reaction. The BaTiO3 single crystals have an average size of 5–10 μm and a thickness of 0.5 μm. The purpose of this article is to control the particle shape with desired structure. High aspect ratio BaTiO3 platelets are suitable templates to obtain textured ceramics (especially Pb(Mg1/3Nb2/3)O3–32.5PbTiO3) by the templated grain growth process.  相似文献   

11.
Lead-free piezoelectric (K0.5Na0.5)NbO3– x wt% Bi2O3 ceramics have been synthesized by an ordinary sintering technique. The addition of Bi2O3 increases the melting point of the system and improves the sintering temperature of (K0.5Na0.5)NbO3 ceramics. All samples show a pure perovskite phase with a typical orthorhombic symmetry when the Bi2O3 content <0.7 wt%. The phase transition temperature of orthorhombic–tetragonal ( T O − T ) and tetragonal–cubic ( T C) slightly decreased when a small amount of Bi2O3 was added. The remnant polarization P r increased and the coercive field E c decreased with increasing addition of Bi2O3. The piezoelectric properties of (K0.5Na0.5)NbO3 ceramics increased when a small amount of Bi2O3 was added. The optimum piezoelectric properties are d 33=140 pC/N, k p=0.46, Q m=167, and T C=410°C for (K0.5Na0.5)NbO3–0.5 wt% Bi2O3 ceramics.  相似文献   

12.
(Bi1/2Na1/2)TiO3 with 0–6 mol% Ba(Cu1/2W1/2)O3 (BNT-BCW), a new member of the BNT-based group, has been prepared following the conventional mixed oxide route. The compacted bodies were sintered at 1130°C for 2 h to get dense ceramics. The addition of BCW into BNT ceramics facilitated the poling process because of a reduction in leakage current. 0.995BNT·0.005BCW ceramics exhibit a relatively high piezoelectric constant ( d 33= 80 × 10−12 C/N) and a relatively low dielectric loss (tan δ= 1.5%). Increased amount of BCW was found to increase the dielectric constant and loss of BNT-BCW ceramics and to suppress the grain growth. During sintering, some BCW diffuses into the lattice of BNT to form a solid solution and some remains on the grain boundaries.  相似文献   

13.
Lead-free (K0.44Na0.52Li0.04) (Nb0.96−xTaxSb0.04)O3 piezoelectric ceramics were prepared by the conventional solid-state sintering method. The grain growth of the ceramics was inhibited and the relative density was improved with Ta substituting for Nb. Increasing x led to different variations of dielectric properties before and after poling, and prevented the occurrence of orthorhombic–tetragonal phase transition (at T o − t ). All the ceramics show an intermediate relaxor-like behavior between normal and ideal relaxor ferroelectrics. Significantly enhanced dielectric and piezoelectric properties were obtained in the ceramics with x =0.20. The ceramics are very promising lead-free materials for electromechanical device applications.  相似文献   

14.
[(K0.50Na0.50)0.95− x Li0.05Ag x ](Nb0.95Ta0.05)O3 (KNLNANT- x ) lead-free piezoelectric ceramics were prepared by normal sintering. Effects of the Ag content on the microstructure and electrical properties of KNLNANT- x ceramics were systematically investigated. It is found that the ceramics with x =0.03 exhibit relatively good electrical properties along with high Curie temperature: ( d 33∼252 pC/N, T c∼438°C, k p∼45.4%, P r∼30.1 μC/cm2, E c∼13.8 kV/cm, ɛr∼1030, and tan δ∼2.6%). The related mechanism for enhanced electrical properties of the ceramics was also discussed. These results show that KNLNANT-0.03 ceramic is a promising candidate material for high temperature lead-free piezoelectric ceramics.  相似文献   

15.
(1− x )(Na0.5K0.5)NbO3– x AgSbO3 lead-free piezoelectric ceramics were prepared by normal sintering. The effects of the AgSbO3 on the phase structure and piezoelectric properties of the ceramics were systematically studied. These results show that the AgSbO3-modified (K0.50Na0.50)NbO3 lead-free piezoelectric ceramics form stable solution with orthorhombic structure, and the Curie temperature and the polymorphic phase transition of the ceramics decreased with increasing AgSbO3. The result shows that the piezoelectric properties of the ceramics strongly depend on the AgSbO3. The ceramics with x =0.05 possess optimum properties ( d 33=192 pC/N, k p=43%, T c=348°C, T o−t =145°C, ɛr∼632, and tan δ∼3.5%). These results indicate that the ceramic is a promising candidate material for lead-free piezoelectric ceramics.  相似文献   

16.
The effects of Nb2O5 and ZnO addition on the dielectric properties, especially the quality factor, of (Zr0.8Sn0.2)TiO4 (ZST) ceramics were investigated in terms of the sintered density acquired by the zinc. For ZST ceramics with 2 mol% added ZnO, the relative density of the samples decreased with >0.5 mol% addition of Nb2O5. On the other hand, for samples with 6 mol% added ZnO, the relative density remained >97%, even when the amount of Nb2O5 was increased to 2.0 mol%. When >0.5 mol% Nb2O5 was added, both the quality factor and the dielectric constant exhibited similar trends with sintered density. The ZST ceramics with 6 mol% added ZnO, especially, still manifested a quality factor >40 000 and a dielectric constant of 37, even when the amount of Nb2O5 was increased, values that are not explainable by the previously suggested electronic defect model.  相似文献   

17.
Effects of additives on the piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 ceramics in a perovskite-type structure are described. The tetragonality of Pb(Mg1/3Nb2/3)0.375-Ti0.375Zr0.25O3 ceramics increased with the addition of NiO, Cr2O3, or Fe2O3 but decreased with the addition of MnO2 or CoO. The dielectric and piezoelectric properties of the base composition were improved markedly through selection of additives in proper amounts. Addition of NiO yielded a high dielectric constant and planar coupling coefficient for compositions at the morphotropic transition boundary. High mechanical Q -factors and low electrical dissipation factors were obtained by addition of MnO2. Addition of both NiO and MnO2 produced a mechanical Q -factor of 2051 and a planar coupling coefficient of 0.553. The resonant frequency of Pb(Mg1/2Nb2/3)0.4375Ti0.4375 zr0.125O3 containing MnO2 had very low temperature and time dependence. The microstructure indicated that ceramics with a high mechanical Q -factor had a fine, uniform grain structure. Addition of Cr2O3 retarded grain growth and addition of MnO2, NiO, CoO, or Fe2O3 promoted grain growth in the ternary system.  相似文献   

18.
Sb2O5 were selected to substitute (Nb0.8Ta0.2)2O5 and the effects of Sb substitution on the dielectric properties of Ag(Nb0.8Ta0.2)O3 ceramics were studied. The perovskite Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics showed no obvious change with x value being no more than 0.08, and the pseudoperovskite unit cell parameters a = c , b and monoclinic angle β decrease with Sb concentration increasing. The dielectric properties of Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics were found to be affected greatly by the substitution of Sb for Nb/Ta. The ɛ value of Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics sintered at their densified temperature increased from 480 to 825 with x from 0 to 0.08, the tan δ value decreased sharply from 0.0065 to 0.0023 (at 1 MHz) with x increasing from 0 to 0.04, and then kept a stable lower tan δ value ∼0.0024 with x to 0.08. The temperature coefficient of capacitance values continuously decreased from a positive value of 1450 ppm/°C for x =0 to a negative value of −38.52 ppm/°C for x =0.08.  相似文献   

19.
Sintering of 0.5-wt%-MnO2-added Pb(Zr0.53Ti0.47)O3 ceramics progresses at 935°C for 50 min by the addition of complex oxides of perovskite-type crystal structure, BiFeO3 and Ba(Cu0.5W0.5)O3. In order to elucidate the low-temperature sintering mechanism of Pb(Zr,Ti)O3 ceramics, the shrinkage and the evolution of the microstructure of a compacted body during heating were studied. It has been shown that the densification process was separated into the following three stages: the rearrangement of grains, the grain boundary diffusion of atoms, and then grain growth. Also, microstructural and elemental analyses of the ceramics revealed the existence of an amorphous phase at the grain boundaries predominantly composed of lead and copper oxides. Consequently, this process can be facilitated by the occurrence of a transient liquid phase corresponding to the above amorphous phase.  相似文献   

20.
The dielectric properties of (Pb1– x Xx) (Zr0.7Ti0.3)O3 (X = Ca, Sr, Ba) ceramics (abbreviated PXZT) were investigated for applications to multilayer ceramic capacitors (MLCs) with dielectric layers thinner than 10 μm. The dissipation factors for MLCs with 5-μm-thick dielectric layers were estimated from those for 100-μm-thick disk specimens measured at an oscillation voltage of 20 Vrms. Those for PCZT and PSZT were less than 1.0% when the oscillation voltage was 20 Vrms, while those for conventional BaTiO3-based dielectric ceramics were greater than 2.5% at 20 Vrms. According to polarization–electric field hysteresis measurements, PCZT and PSZT revealed linear and double hysteresis loops, respectively, while PBZT and BaTiO3 indicated typical ferroelectric hysteresis loops. The differences in the dissipation factors for the dielectric compositions are attributed to hysteresis in the polarization–electric field loops. These results suggest that PCZT and PSZT are promising dielectric ceramics for MLCs with dielectric layers thinner than 10 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号