首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic alterations of DNA repair genes, particularly BRCA2 in patients with prostate cancer, are associated with aggressive behavior of the disease. It has reached consensus that somatic and germline tests are necessary when treating advanced prostate cancer patients. Yet, it is unclear whether the mutations are associated with any presenting clinical features. We assessed the incidences and characteristics of BRCA2 mutated cancers by targeted sequencing in 126 sets of advanced prostate cancer tissue sequencing data. At the time of diagnosis, cT3/4, N1 and M1 stages were 107 (85%), 54 (43%) and 35 (28%) samples, respectively. BRCA2 alterations of clinical significance by AMP/ASCO/CAP criteria were found in 19 of 126 samples (15.1%). The BRCA2 mutated cancer did not differ in the distributions of TNM stage, Gleason grade group or histological subtype compared to BRCA2 wild-type cancers. Yet, they had higher tumor mutation burden, and higher frequency of ATM and BRCA1 mutations (44% vs. 10%, p = 0.002 and 21% vs. 4%, p = 0.018, respectively). Of the metastatic subgroup (M1, n = 34), mean PSA was significantly lower in BRCA2 mutated cancers than wild-type (p = 0.018). In the non-metastatic subgroup (M0, n = 64), PSA was not significantly different (p = 0.425). A similar trend was noted in multiple metastatic prostate cancer public datasets. We conclude that BRCA2 mutated metastatic prostate cancers may present in an advanced stage with relatively low PSA.  相似文献   

2.
3.
The BRCA1/2 germline and/or somatic pathogenic variants (PVs) are key players in the hereditary predisposition and therapeutic response for breast, ovarian and, more recently, pancreatic and prostate cancers. Aberrations in other genes involved in homologous recombination and DNA damage response (DDR) pathways are being investigated as promising targets in ongoing clinical trials. However, DDR genes are not routinely tested worldwide. Due to heterogeneity in cohort selection and dissimilar sequencing approaches across studies, neither the burden of PVs in DDR genes nor the prevalence of PVs in genes in common among pancreatic and prostate cancer can be easily quantified. We aim to contextualize these genes, altered in both pancreatic and prostate cancers, in the DDR process, to summarize their hereditary and somatic burden in different studies and harness their deficiency for cancer treatments in the context of currently ongoing clinical trials. We conclude that the inclusion of DDR genes, other than BRCA1/2, shared by both cancers considerably increases the detection rate of potentially actionable variants, which are triplicated in pancreatic and almost doubled in prostate cancer. Thus, DDR alterations are suitable targets for drug development and to improve the outcome in both pancreatic and prostate cancer patients. Importantly, this will increase the detection of germline pathogenic variants, thereby patient referral to genetic counseling.  相似文献   

4.
BRCA1 and BRCA2 are tumor suppressor genes with pivotal roles in the development of breast and ovarian cancers. These genes are essential for DNA double-strand break repair via homologous recombination (HR), which is a virtually error-free DNA repair mechanism. Following BRCA1 or BRCA2 mutations, HR is compromised, forcing cells to adopt alternative error-prone repair pathways that often result in tumorigenesis. Synthetic lethality refers to cell death caused by simultaneous perturbations of two genes while change of any one of them alone is nonlethal. Therefore, synthetic lethality can be instrumental in identifying new therapeutic targets for BRCA1/2 mutations. PARP is an established synthetic lethal partner of the BRCA genes. Its role is imperative in the single-strand break DNA repair system. Recently, Olaparib (a PARP inhibitor) was approved for treatment of BRCA1/2 breast and ovarian cancer as the first successful synthetic lethality-based therapy, showing considerable success in the development of effective targeted cancer therapeutics. Nevertheless, the possibility of drug resistance to targeted cancer therapy based on synthetic lethality necessitates the development of additional therapeutic options. This literature review addresses cancer predisposition genes, including BRCA1, BRCA2, and PALB2, synthetic lethality in the context of DNA repair machinery, as well as available treatment options.  相似文献   

5.
BRCA1 is a well-known breast cancer risk gene, involved in DNA damage repair via homologous recombination (HR) and replication fork protection. Therapy resistance was linked to loss and amplification of the BRCA1 gene causing inferior survival of breast cancer patients. Most studies have focused on the analysis of complete loss or mutations in functional domains of BRCA1. How mutations in non-functional domains contribute to resistance mechanisms remains elusive and was the focus of this study. Therefore, clones of the breast cancer cell line MCF7 with indels in BRCA1 exon 9 and 14 were generated using CRISPR/Cas9. Clones with successful introduced BRCA1 mutations were evaluated regarding their capacity to perform HR, how they handle DNA replication stress (RS), and the consequences on the sensitivity to MMC, PARP1 inhibition, and ionizing radiation. Unexpectedly, BRCA1 mutations resulted in both increased sensitivity and resistance to exogenous DNA damage, despite a reduction of HR capacity in all clones. Resistance was associated with improved DNA double-strand break repair and reduction in replication stress (RS). Lower RS was accompanied by increased activation and interaction of proteins essential for the S phase-specific DNA damage response consisting of HR proteins, FANCD2, and CHK1.  相似文献   

6.
Ovarian cancer is the fifth most common female cancer in the Western world, and the deadliest gynecological malignancy. The overall poor prognosis for ovarian cancer patients is a consequence of aggressive biological behavior and a lack of adequate diagnostic tools for early detection. In fact, approximately 70% of all patients with epithelial ovarian cancer are diagnosed at advanced tumor stages. These facts highlight a significant clinical need for reliable and accurate detection methods for ovarian cancer, especially for patients at high risk. Because CA125 has not achieved satisfactory sensitivity and specificity in detecting ovarian cancer, numerous efforts, including those based on single and combined molecule detection and “omics” approaches, have been made to identify new biomarkers. Intriguingly, more than 10% of all ovarian cancer cases are of familial origin. BRCA1 and BRCA2 germline mutations are the most common genetic defects underlying hereditary ovarian cancer, which is why ovarian cancer risk assessment in developed countries, aside from pedigree analysis, relies on genetic testing of BRCA1 and BRCA2. Because not only BRCA1 and BRCA2 but also other susceptibility genes are tightly linked with ovarian cancer-specific DNA repair defects, another possible approach for defining susceptibility might be patient cell-based functional testing, a concept for which support came from a recent case-control study. This principle would be applicable to risk assessment and the prediction of responsiveness to conventional regimens involving platinum-based drugs and targeted therapies involving poly (ADP-ribose) polymerase (PARP) inhibitors.  相似文献   

7.
Ovarian cancer is the most lethal gynecologic malignancy in the United States. Some patients affected by ovarian cancers often present genome instability with one or more of the defects in DNA repair pathways, particularly in homologous recombination (HR), which is strictly linked to mutations in breast cancer susceptibility gene 1 (BRCA 1) or breast cancer susceptibility gene 2 (BRCA 2). The treatment of ovarian cancer remains a challenge, and the majority of patients with advanced-stage ovarian cancers experience relapse and require additional treatment despite initial therapy, including optimal cytoreductive surgery (CRS) and platinum-based chemotherapy. Targeted therapy at DNA repair genes has become a unique strategy to combat homologous recombination-deficient (HRD) cancers in recent years. Poly (ADP-ribose) polymerase (PARP), a family of proteins, plays an important role in DNA damage repair, genome stability, and apoptosis of cancer cells, especially in HRD cancers. PARP inhibitors (PARPi) have been reported to be highly effective and low-toxicity drugs that will tremendously benefit patients with HRD (i.e., BRCA 1/2 mutated) epithelial ovarian cancer (EOC) by blocking the DNA repair pathways and inducing apoptosis of cancer cells. PARP inhibitors compete with NAD+ at the catalytic domain (CAT) of PARP to block PARP catalytic activity and the formation of PAR polymers. These effects compromise the cellular ability to overcome DNA SSB damage. The process of HR, an essential error-free pathway to repair DNA DSBs during cell replication, will be blocked in the condition of BRCA 1/2 mutations. The PARP-associated HR pathway can also be partially interrupted by using PARP inhibitors. Grossly, PARP inhibitors have demonstrated some therapeutic benefits in many randomized phase II and III trials when combined with the standard CRS for advanced EOCs. However, similar to other chemotherapy agents, PARP inhibitors have different clinical indications and toxicity profiles and also face drug resistance, which has become a major challenge. In high-grade epithelial ovarian cancers, the cancer cells under hypoxia- or drug-induced stress have the capacity to become polyploidy giant cancer cells (PGCCs), which can survive the attack of chemotherapeutic agents and start endoreplication. These stem-like, self-renewing PGCCs generate mutations to alter the expression/function of kinases, p53, and stem cell markers, and diploid daughter cells can exhibit drug resistance and facilitate tumor growth and metastasis. In this review, we discuss the underlying molecular mechanisms of PARP inhibitors and the results from the clinical studies that investigated the effects of the FDA-approved PARP inhibitors olaparib, rucaparib, and niraparib. We also review the current research progress on PARP inhibitors, their safety, and their combined usage with antiangiogenic agents. Nevertheless, many unknown aspects of PARP inhibitors, including detailed mechanisms of actions, along with the effectiveness and safety of the treatment of EOCs, warrant further investigation.  相似文献   

8.
Many cancers develop as a consequence of genomic instability, which induces genomic rearrangements and nucleotide mutations. Failure to correct DNA damage in DNA repair defective cells, such as in BRCA1 and BRCA2 mutated backgrounds, is directly associated with increased cancer risk. Genomic rearrangement is generally a consequence of erroneous repair of DNA double-strand breaks (DSBs), though paradoxically, many cancers develop in the absence of DNA repair defects. DNA repair systems are essential for cell survival, and in cancers deficient in one repair pathway, other pathways can become upregulated. In this review, we examine the current literature on genomic alterations in cancer cells and the association between these alterations and DNA repair pathway inactivation and upregulation.  相似文献   

9.
Prostate cancer (PCa) is globally the second most diagnosed cancer type and the most common cause of cancer-related deaths in men. Family history of PCa, hereditary breast and ovarian cancer (HBOC) and Lynch syndromes (LS), are among the most important risk factors compared to age, race, ethnicity and environmental factors for PCa development. Hereditary prostate cancer (HPCa) has the highest heritability of any major cancer in men. The proportion of PCa attributable to hereditary factors has been estimated in the range of 5–15%. To date, the genes more consistently associated to HPCa susceptibility include mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) and homologous recombination genes (BRCA1/2, ATM, PALB2, CHEK2). Additional genes are also recommended to be integrated into specific research, including HOXB13, BRP1 and NSB1. Importantly, BRCA1/BRCA2 and ATM mutated patients potentially benefit from Poly (ADP-ribose) polymerase PARP inhibitors, through a mechanism of synthetic lethality, causing selective tumor cell cytotoxicity in cell lines. Moreover, the detection of germline alterations in MMR genes has therapeutic implications, as it may help to predict immunotherapy benefits. Here, we discuss the current knowledge of the genetic basis for inherited predisposition to PCa, the potential target therapy, and the role of active surveillance as a management strategy for patients with low-risk PCa. Finally, the current PCa guideline recommendations are reviewed.  相似文献   

10.
In the recent decade, the importance of DNA damage repair (DDR) and its clinical application have been firmly recognized in prostate cancer (PC). For example, olaparib was just approved in May 2020 to treat metastatic castration-resistant PC with homologous recombination repair-mutated genes; however, not all patients can benefit from olaparib, and the treatment response depends on patient-specific mutations. This highlights the need to understand the detailed DDR biology further and develop DDR-based biomarkers. In this study, we establish a four-gene panel of which the expression is significantly associated with overall survival (OS) and progression-free survival (PFS) in PC patients from the TCGA-PRAD database. This panel includes DNTT, EXO1, NEIL3, and EME2 genes. Patients with higher expression of the four identified genes have significantly worse OS and PFS. This significance also exists in a multivariate Cox regression model adjusting for age, PSA, TNM stages, and Gleason scores. Moreover, the expression of the four-gene panel is highly correlated with aggressiveness based on well-known PAM50 and PCS subtyping classifiers. Using publicly available databases, we successfully validate the four-gene panel as having the potential to serve as a prognostic and predictive biomarker for PC specifically based on DDR biology.  相似文献   

11.
PALB2 (partner and localizer of BRCA2), as indicated by its name, is a BRCA2-interacting protein that plays an important role in homologous recombination (HR) and DNA double-strand break (DSB) repair. While pathogenic variants of PALB2 have been well proven to confer an increased risk of breast cancer, data on its involvement in prostate cancer (PrC) have not been clearly demonstrated. We investigated, using targeted next generation sequencing (NGS), a 59-year-old Caucasian man who developed synchronous breast and prostate cancers. This genetic investigation allowed to identify an intragenic germline heterozygous duplication in PALB2, implicating intronic repetitive sequences spanning exon 11. This variant was confirmed by multiplex ligation probe amplification (MLPA), and genomic breakpoints have been identified and characterized at the nucleotide level (c.3114-811_3202-1756dup) using an approach based on walking PCR, long range PCR, and Sanger sequencing. RT-PCR using mRNA extracted from lymphocytes and followed by Sanger sequencing revealed a tandem duplication r.3114_3201dup; p.(Gly1068Glufs * 14). This duplication results in the synthesis of a truncated, and most-likely, non-functional protein. These findings expand the phenotypic spectrum of PALB2 variants and may improve the yield of genetic diagnoses in this field.  相似文献   

12.
Homologous recombination (HR) is a vital process for repairing DNA double-strand breaks. Germline variants in the HR pathway, comprising at least 10 genes, such as BRCA1, BRCA2, ATM, BARD1, BRIP1, CHEK2, NBS1(NBN), PALB2, RAD51C, and RAD51D, lead to inherited susceptibility to specific types of cancers, including those of the breast, ovaries, prostate, and pancreas. The penetrance of germline pathogenic variants of each gene varies, whereas all their associated protein products are indispensable for maintaining a high-fidelity DNA repair system by HR. The present review summarizes the basic molecular mechanisms and components that collectively play a role in maintaining genomic integrity against DNA double-strand damage and their clinical implications on each type of hereditary tumor.  相似文献   

13.
14.
Intraductal carcinoma of the prostate (IDC-P) is a rare and unique form of aggressive prostate carcinoma, which is characterized by an expansile proliferation of malignant prostatic epithelial cells within prostatic ducts or acini and the preservation of basal cell layers around the involved glands. The vast majority of IDC-P tumors result from adjacent high-grade invasive cancer via the retrograde spreading of tumor cells into normal prostatic ducts or acini. A subset of IDC-P tumors is rarely derived from the de novo intraductal proliferation of premalignant cells. The presence of IDC-P in biopsy or surgical specimens is significantly associated with aggressive pathologic features, such as high Gleason grade, large tumor volume, and advanced tumor stage, and with poor clinical courses, including earlier biochemical recurrence, distant metastasis, and worse survival outcomes. These architectural and behavioral features of IDC-P may be driven by specific molecular properties. Notably, IDC-P possesses distinct genomic profiles, including higher rates of TMPRSS2–ERG gene fusions and PTEN loss, increased percentage of genomic instability, and higher prevalence of germline BRCA2 mutations. Considering that IDC-P tumors are usually resistant to conventional therapies for prostate cancer, further studies should be performed to develop optimal therapeutic strategies based on distinct genomic features, such as treatment with immune checkpoint blockades or poly (adenosine diphosphate–ribose) polymerase inhibitors for patients harboring increased genomic instability or BRCA2 mutations, as well as genetic counseling with genetic testing. Patient-derived xenografts and tumor organoid models can be the promising in vitro platforms for investigating the molecular features of IDC-P tumor.  相似文献   

15.
16.
Approximately 5–10% of all breast cancer (BC) cases are caused by germline pathogenic variants (GPVs) in various cancer predisposition genes (CPGs). The most common contributors to hereditary BC are BRCA1 and BRCA2, which are associated with hereditary breast and ovarian cancer (HBOC). ATM, BARD1, CHEK2, PALB2, RAD51C, and RAD51D have also been recognized as CPGs with a high to moderate risk of BC. Primary and secondary cancer prevention strategies have been established for HBOC patients; however, optimal preventive strategies for most hereditary BCs have not yet been established. Most BC-associated CPGs participate in DNA damage repair pathways and cell cycle checkpoint mechanisms, and function jointly in such cascades; therefore, a fundamental understanding of the disease drivers in such cascades can facilitate the accurate estimation of the genetic risk of developing BC and the selection of appropriate preventive and therapeutic strategies to manage hereditary BCs. Herein, we review the functions of key BC-associated CPGs and strategies for the clinical management in individuals harboring the GPVs of such genes.  相似文献   

17.
The clonal composition of a malignant tumor strongly depends on cellular dynamics influenced by the asynchronized loss of DNA repair mechanisms. Here, our aim was to identify founder mutations leading to subsequent boosts in mutation load. The overall mutation burden in 591 colorectal cancer tumors was analyzed, including the mutation status of DNA-repair genes. The number of mutations was first determined across all patients and the proportion of genes having mutation in each percentile was ranked. Early mutations in DNA repair genes preceding a mutational expansion were designated as founder mutations. Survival analysis for gene expression was performed using microarray data with available relapse-free survival. Of the 180 genes involved in DNA repair, the top five founder mutations were in PRKDC (n = 31), ATM (n = 26), POLE (n = 18), SRCAP (n = 18), and BRCA2 (n = 15). PRKDC expression was 6.4-fold higher in tumors compared to normal samples, and higher expression led to longer relapse-free survival in 1211 patients (HR = 0.72, p = 4.4 × 10−3). In an experimental setting, the mutational load resulting from UV radiation combined with inhibition of PRKDC was analyzed. Upon treatments, the mutational load exposed a significant two-fold increase. Our results suggest PRKDC as a new key gene driving tumor heterogeneity.  相似文献   

18.
19.
In 2020, approximately 191,930 new prostate cancer (PCa) cases are estimated in the United States (US). Hispanic/Latinos (H/L) are the second largest racial/ethnic group in the US. This study aims to assess methylation patterns between aggressive and indolent PCa including DNA repair genes along with ancestry proportions. Prostate tumors classified as aggressive (n = 11) and indolent (n = 13) on the basis of the Gleason score were collected. Tumor and adjacent normal tissue were annotated on H&E (Haemotoxylin and Eosin) slides and extracted by macro-dissection. Methylation patterns were assessed using the Illumina 850K DNA methylation platform. Raw data were processed using the Bioconductor package. Global ancestry proportions were estimated using ADMIXTURE (k = 3). One hundred eight genes including AOX1 were differentially methylated in tumor samples. Regarding the PCa aggressiveness, six hypermethylated genes (RREB1, FAM71F2, JMJD1C, COL5A3, RAE1, and GABRQ) and 11 hypomethylated genes (COL9A2, FAM179A, SLC17A2, PDE10A, PLEKHS1, TNNI2, OR51A4, RNF169, SPNS2, ADAMTSL5, and CYP4F12) were identified. Two significant differentially methylated DNA repair genes, JMJD1C and RNF169, were found. Ancestry proportion results for African, European, and Indigenous American were 24.1%, 64.2%, and 11.7%, respectively. The identification of DNA methylation patterns related to PCa in H/L men along with specific patterns related to aggressiveness and DNA repair constitutes a pivotal effort for the understanding of PCa in this population.  相似文献   

20.
As our understanding of the molecular pathways driving tumorigenesis improves and more druggable targets are identified, we have witnessed a concomitant increase in the development and production of novel molecularly targeted agents. Radiotherapy is commonly used in the treatment of various malignancies with a prominent role in the care of prostate cancer patients, and efforts to improve the therapeutic ratio of radiation by technologic and pharmacologic means have led to important advances in cancer care. One promising approach is to combine molecularly targeted systemic agents with radiotherapy to improve tumor response rates and likelihood of durable control. This review first explores the limitations of preclinical studies as well as barriers to successful implementation of clinical trials with radiosensitizers. Special considerations related to and recommendations for the design of preclinical studies and clinical trials involving molecularly targeted agents combined with radiotherapy are provided. We then apply these concepts by reviewing a representative set of targeted therapies that show promise as radiosensitizers in the treatment of prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号