共查询到20条相似文献,搜索用时 15 毫秒
1.
Jamie van Son Laura L. Koekkoek Susanne E. La Fleur Mireille J. Serlie Max Nieuwdorp 《International journal of molecular sciences》2021,22(6)
Interaction between the gut and the brain is essential for energy homeostasis. In obesity, this homeostasis is disrupted, leading to a positive energy balance and weight gain. Obesity is a global epidemic that affects individual health and strains the socioeconomic system. Microbial dysbiosis has long been reported in obesity and obesity-related disorders. More recent literature has focused on the interaction of the gut microbiota and its metabolites on human brain and behavior. Developing strategies that target the gut microbiota could be a future approach for the treatment of obesity. Here, we review the microbiota–gut–brain axis and possible therapeutic options. 相似文献
2.
Marina Romaní-Prez Clara Bullich-Vilarrubias Inmaculada Lpez-Almela Rebeca Libana-García Marta Olivares Yolanda Sanz 《International journal of molecular sciences》2021,22(11)
Obesity currently represents a major societal and health challenge worldwide. Its prevalence has reached epidemic proportions and trends continue to rise, reflecting the need for more effective preventive measures. Hypothalamic circuits that control energy homeostasis in response to food intake are interesting targets for body-weight management, for example, through interventions that reinforce the gut-to-brain nutrient signalling, whose malfunction contributes to obesity. Gut microbiota–diet interactions might interfere in nutrient sensing and signalling from the gut to the brain, where the information is processed to control energy homeostasis. This gut microbiota–brain crosstalk is mediated by metabolites, mainly short chain fatty acids, secondary bile acids or amino acids-derived metabolites and subcellular bacterial components. These activate gut–endocrine and/or neural-mediated pathways or pass to systemic circulation and then reach the brain. Feeding time and dietary composition are the main drivers of the gut microbiota structure and function. Therefore, aberrant feeding patterns or unhealthy diets might alter gut microbiota–diet interactions and modify nutrient availability and/or microbial ligands transmitting information from the gut to the brain in response to food intake, thus impairing energy homeostasis. Herein, we update the scientific evidence supporting that gut microbiota is a source of novel dietary and non-dietary biological products that may beneficially regulate gut-to-brain communication and, thus, improve metabolic health. Additionally, we evaluate how the feeding time and dietary composition modulate the gut microbiota and, thereby, the intraluminal availability of these biological products with potential effects on energy homeostasis. The review also identifies knowledge gaps and the advances required to clinically apply microbiome-based strategies to improve the gut–brain axis function and, thus, combat obesity. 相似文献
3.
Schizophrenia is a severe neuropsychiatric disorder, and its etiology remains largely unknown. Environmental factors have been reported to play roles in the pathogenesis of schizophrenia, and one of the major environmental factors identified for this disorder is psychosocial stress. Several studies have suggested that stressful life events, as well as the chronic social stress associated with city life, may lead to the development of schizophrenia. The other factor is the gut–brain axis. The composition of the gut microbiome and alterations thereof may affect the brain and may lead to schizophrenia. The main interest of this review article is in overviewing the major recent findings on the effects of stress and the gut–brain axis, as well as their possible bidirectional effects, in the pathogenesis of schizophrenia. 相似文献
4.
Accumulating evidence suggests that the gut microbiome influences the brain functions and psychological state of its host via the gut–brain axis, and gut dysbiosis has been linked to several mental illnesses, including major depressive disorder (MDD). Animal experiments have shown that a depletion of the gut microbiota leads to behavioral changes, and is associated with pathological changes, including abnormal stress response and impaired adult neurogenesis. Short-chain fatty acids such as butyrate are known to contribute to the up-regulation of brain-derived neurotrophic factor (BDNF), and gut dysbiosis causes decreased levels of BDNF, which could affect neuronal development and synaptic plasticity. Increased gut permeability causes an influx of gut microbial components such as lipopolysaccharides, and the resultant systemic inflammation may lead to neuroinflammation in the central nervous system. In light of the fact that gut microbial factors contribute to the initiation and exacerbation of depressive symptoms, this review summarizes the current understanding of the molecular mechanisms involved in MDD onset, and discusses the therapeutic potential of probiotics, including butyrate-producing bacteria, which can mediate the microbiota–gut–brain axis. 相似文献
5.
Mnica Aguilera Valerio Rossini Ana Hickey Donjete Simnica Fiona Grady Valeria D. Felice Amy Moloney Lauren Pawley Aine Fanning Lorraine McCarthy Siobhan M. OMahony John F. Cryan Ken Nally Fergus Shanahan Silvia Melgar 《International journal of molecular sciences》2021,22(15)
Interactions between the intestinal microbiota, immune system and nervous system are essential for homeostasis in the gut. Inflammasomes contribute to innate immunity and brain–gut interactions, but their role in microbiota–neuro–immune interactions is not clear. Therefore, we investigated the effect of the inflammasome on visceral pain and local and systemic neuroimmune responses after antibiotic-induced changes to the microbiota. Wild-type (WT) and caspase-1/11 deficient (Casp1 KO) mice were orally treated for 2 weeks with an antibiotic cocktail (Abx, Bacitracin A and Neomycin), followed by quantification of representative fecal commensals (by qPCR), cecal short chain fatty acids (by HPLC), pathways implicated in the gut–neuro-immune axis (by RT-qPCR, immunofluorescence staining, and flow cytometry) in addition to capsaicin-induced visceral pain responses. Abx-treatment in WT-mice resulted in an increase in colonic macrophages, central neuro-immune interactions, colonic inflammasome and nociceptive receptor gene expression and a reduction in capsaicin-induced visceral pain. In contrast, these responses were attenuated in Abx-treated Casp1 KO mice. Collectively, the data indicate an important role for the inflammasome pathway in functional and inflammatory gastrointestinal conditions where pain and alterations in microbiota composition are prominent. 相似文献
6.
Mauritz F. Herselman Sheree Bailey Larisa Bobrovskaya 《International journal of molecular sciences》2022,23(4)
Compelling evidence is building for the involvement of the complex, bidirectional communication axis between the gastrointestinal tract and the brain in neuropsychiatric disorders such as depression. With depression projected to be the number one health concern by 2030 and its pathophysiology yet to be fully elucidated, a comprehensive understanding of the interactions between environmental factors, such as stress and diet, with the neurobiology of depression is needed. In this review, the latest research on the effects of stress on the bidirectional connections between the brain and the gut across the most widely used animal models of stress and depression is summarised, followed by comparisons of the diversity and composition of the gut microbiota across animal models of stress and depression with possible implications for the gut–brain axis and the impact of dietary changes on these. The composition of the gut microbiota was consistently altered across the animal models investigated, although differences between each of the studies and models existed. Chronic stressors appeared to have negative effects on both brain and gut health, while supplementation with prebiotics and/or probiotics show promise in alleviating depression pathophysiology. 相似文献
7.
Dong Hoon Park Joo Wan Kim Hi-Joon Park Dae-Hyun Hahm 《International journal of molecular sciences》2021,22(8)
Atopic dermatitis (AD) is a refractory and relapsing skin disease with a complex and multifactorial etiology. Various congenital malformations and environmental factors are thought to be involved in the onset of the disease. The etiology of the disease has been investigated, with respect to clinical skin symptoms and systemic immune response factors. A gut microbiome–mediated connection between emotional disorders such as depression and anxiety, and dermatologic conditions such as acne, based on the comorbidities of these two seemingly unrelated disorders, has long been hypothesized. Many aspects of this gut–brain–skin integration theory have recently been revalidated to identify treatment options for AD with the recent advances in metagenomic analysis involving powerful sequencing techniques and bioinformatics that overcome the need for isolation and cultivation of individual microbial strains from the skin or gut. Comparative analysis of microbial clusters across the gut–skin axis can provide new information regarding AD research. Herein, we provide a historical perspective on the modern investigation and clinical implications of gut–skin connections in AD in terms of the integration between the two microbial clusters. 相似文献
8.
Elisabet Navarro-Tapia Laura Almeida-Toledano Giorgia Sebastiani Mariona Serra-Delgado
scar García-Algar Vicente Andreu-Fernndez 《International journal of molecular sciences》2021,22(5)
Anxiety and eating disorders produce a physiological imbalance that triggers alterations in the abundance and composition of gut microbiota. Moreover, the gut–brain axis can be altered by several factors such as diet, lifestyle, infections, and antibiotic treatment. Diet alterations generate gut dysbiosis, which affects immune system responses, inflammation mechanisms, the intestinal permeability, as well as the production of short chain fatty acids and neurotransmitters by gut microbiota, which are essential to the correct function of neurological processes. Recent studies indicated that patients with generalized anxiety or eating disorders (anorexia nervosa, bulimia nervosa, and binge-eating disorders) show a specific profile of gut microbiota, and this imbalance can be partially restored after a single or multi-strain probiotic supplementation. Following the PRISMA methodology, the current review addresses the main microbial signatures observed in patients with generalized anxiety and/or eating disorders as well as the importance of probiotics as a preventive or a therapeutic tool in these pathologies. 相似文献
9.
Jessica Rebeaud Benjamin Peter Caroline Pot 《International journal of molecular sciences》2022,23(17)
Microbiota-derived metabolites are important molecules connecting the gut to the brain. Over the last decade, several studies have highlighted the importance of gut-derived metabolites in the development of multiple sclerosis (MS). Indeed, microbiota-derived metabolites modulate the immune system and affect demyelination. Here, we discuss the current knowledge about microbiota-derived metabolites implications in MS and in different mouse models of neuroinflammation. We focus on the main families of microbial metabolites that play a role during neuroinflammation. A better understanding of the role of those metabolites may lead to new therapeutical avenues to treat neuroinflammatory diseases targeting the gut–brain axis. 相似文献
10.
The gut microbiota has been demonstrated to play a critical role in maintaining cognitive function via the gut-brain axis, which may be related to the parasympathetic nervous system (PNS). However, the exact mechanism remains to be determined. We investigated that patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD) could exhibit an altered gut microbiota through the suppression of the PNS, compared to the healthy individuals, using the combined gut microbiota data from previous human studies. The hypothesis was validated in rats to suppress the PNS by scopolamine injections. The human fecal bacterial FASTA/Q files were selected and combined from four different AD studies (n = 410). All rats had a high-fat diet and treatments for six weeks. The MD rats had memory impairment by scopolamine injection (2 mg/kg body weight; MD, Control) or no memory impairment by saline injection. The scopolamine-injected rats had a donepezil intake as the positive group. In the optimal model generated from the XGboost analysis, Blautia luti, Pseudomonas mucidoiens, Escherichia marmotae, and Gemmiger formicillis showed a positive correlation with MCI while Escherichia fergusonii, Mycobacterium neglectum, and Lawsonibacter asaccharolyticus were positively correlated with AD in the participants with enterotype Bacteroides (ET-B, n = 369). The predominant bacteria in the AD group were negatively associated in the networking analysis with the bacteria in the healthy group of ET-B participants. From the animal study, the relative abundance of Bacteroides and Bilophilia was lower, and that of Escherichia, Blautia, and Clostridium was higher in the scopolamine-induced memory deficit (MD) group than in the normal group. These results suggest that MCI was associated with the PNS suppression and could progress to AD by exacerbating the gut dysbiosis. MCI increased Clostridium and Blautia, and its progression to AD elevated Escherichia and Pseudomonas. Therefore, the modulation of the PNS might be linked to an altered gut microbiota and brain function, potentially through the gut-brain axis. 相似文献
11.
Lixia Li Xinting Lan Xi Peng Shuai Shi Yanlin Zhao Wentao Liu Qihui Luo Lanlan Jia Bin Feng Zhengli Chen Yuanfeng Zou Chao Huang 《International journal of molecular sciences》2022,23(18)
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, thus treatments for it have attracted lots of interest. In this study, the Salviae miltiorrhizae Radix et Rhizoma (SMRR) polysaccharide was isolated by hot water extraction and ethanol precipitation, and then purified by DEAE anion exchange chromatography and gel filtration. With a high-fat-diet-induced obesity/NAFLD mouse model, we found that consumption of the SMRR polysaccharide could remarkably reverse obesity and its related progress of NAFLD, including attenuated hepatocellular steatosis, hepatic fibrosis and inflammation. In addition, we also reveal the potential mechanism behind these is that the SMRR polysaccharide could regulate the gut–liver axis by modulating the homeostasis of gut microbiota and thereby improving intestinal function. 相似文献
12.
Javier Calleja-Conde Victor Echeverry-Alzate Kora-Mareen Bühler Pedro Durn-Gonzlez Jose ngel Morales-García Lucía Segovia-Rodríguez Fernando Rodríguez de Fonseca Elena Gin Jose Antonio Lpez-Moreno 《International journal of molecular sciences》2021,22(14)
The human gut is the largest organ with immune function in our body, responsible for regulating the homeostasis of the intestinal barrier. A diverse, complex and dynamic population of microorganisms, called microbiota, which exert a significant impact on the host during homeostasis and disease, supports this role. In fact, intestinal bacteria maintain immune and metabolic homeostasis, protecting our organism against pathogens. The development of numerous inflammatory disorders and infections has been linked to altered gut bacterial composition or dysbiosis. Multiple factors contribute to the establishment of the human gut microbiota. For instance, diet is considered as one of the many drivers in shaping the gut microbiota across the lifetime. By contrast, alcohol is one of the many factors that disrupt the proper functioning of the gut, leading to a disruption of the intestinal barrier integrity that increases the permeability of the mucosa, with the final result of a disrupted mucosal immunity. This damage to the permeability of the intestinal membrane allows bacteria and their components to enter the blood tissue, reaching other organs such as the liver or the brain. Although chronic heavy drinking has harmful effects on the immune system cells at the systemic level, this review focuses on the effect produced on gut, brain and liver, because of their significance in the link between alcohol consumption, gut microbiota and the immune system. 相似文献
13.
Ines Hecking Lennart Norman Stegemann Verena Theis Matthias Vorgerd Veronika Matschke Sarah Stahlke Carsten Theiss 《International journal of molecular sciences》2022,23(12)
Although the enteric nervous system (ENS) functions largely autonomously as part of the peripheral nervous system (PNS), it is connected to the central nervous system (CNS) via the gut–brain axis. In many neurodegenerative diseases, pathological changes occur in addition to gastrointestinal symptoms, such as alpha-synuclein aggregates in Parkinson’s disease, which are found early in the ENS. In both the CNS and PNS, vascular endothelial growth factor (VEGF) mediates neuroprotective and neuroregenerative effects. Since the ENS with its close connection to the microbiome and the immune system is discussed as the origin of neurodegenerative diseases, it is necessary to investigate the possibly positive effects of VEGF on enteric neurons. Using laser microdissection and subsequent quantitative RT-PCR as well as immunohistochemistry, for the first time we were able to detect and localize VEGF receptor expression in rat myenteric neurons of different ages. Furthermore, we demonstrate direct neuroprotective effects of VEGF in the ENS in cell cultures. Thus, our results suggest a promising approach regarding neuroprotection, as the use of VEGF (may) prevent neuronal damage in the ENS. 相似文献
14.
Lucía N. Peralta-Marzal Naika Prince Djordje Bajic La Roussin Laurent Naudon Sylvie Rabot Johan Garssen Aletta D. Kraneveld Paula Perez-Pardo 《International journal of molecular sciences》2021,22(18)
Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders characterised by behavioural impairment and deficiencies in social interaction and communication. A recent study estimated that 1 in 89 children have developed some form of ASD in European countries. Moreover, there is no specific treatment and since ASD is not a single clinical entity, the identification of molecular biomarkers for diagnosis remains challenging. Besides behavioural deficiencies, individuals with ASD often develop comorbid medical conditions including intestinal problems, which may reflect aberrations in the bidirectional communication between the brain and the gut. The impact of faecal microbial composition in brain development and behavioural functions has been repeatedly linked to ASD, as well as changes in the metabolic profile of individuals affected by ASD. Since metabolism is one of the major drivers of microbiome–host interactions, this review aims to report emerging literature showing shifts in gut microbiota metabolic function in ASD. Additionally, we discuss how these changes may be involved in and/or perpetuate ASD pathology. These valuable insights can help us to better comprehend ASD pathogenesis and may provide relevant biomarkers for improving diagnosis and identifying new therapeutic targets. 相似文献
15.
Ju Eun Lee David Walton Colleen P. OConnor Michael Wammes Jeremy P. Burton Elizabeth A. Osuch 《International journal of molecular sciences》2022,23(12)
Emerging adulthood (ages 18–25) is a critical period for neurobiological development and the maturation of the hypothalamic–pituitary–adrenal axis. Recent findings also suggest that a natural perturbation of the gut microbiota (GM), combined with other factors, may create a unique vulnerability during this period of life. The GM of emerging adults is thought to be simpler, less diverse, and more unstable than either younger or older people. We postulate that this plasticity in the GM suggests a role in the rising mental health issues seen in westernized societies today via the gut–brain–microbiota axis. Studies have paid particular attention to the diversity of the microbiota, the specific function and abundance of bacteria, and the production of metabolites. In this narrative review, we focus specifically on diet, physical activity/exercise, substance use, and sleep in the context of the emerging adult. We propose that this is a crucial period for establishing a stable and more resilient microbiome for optimal health into adulthood. Recommendations will be made about future research into possible behavioral adjustments that may be beneficial to endorse during this critical period to reduce the probability of a “dysbiotic” GM and the emergence and severity of mental health concerns. 相似文献
16.
Amani Alharthi Safiah Alhazmi Najla Alburae Ahmed Bahieldin 《International journal of molecular sciences》2022,23(3)
The high prevalence of gastrointestinal (GI) disorders among autism spectrum disorder (ASD) patients has prompted scientists to look into the gut microbiota as a putative trigger in ASD pathogenesis. Thus, many studies have linked the gut microbial dysbiosis that is frequently observed in ASD patients with the modulation of brain function and social behavior, but little is known about this connection and its contribution to the etiology of ASD. This present review highlights the potential role of the microbiota–gut–brain axis in autism. In particular, it focuses on how gut microbiota dysbiosis may impact gut permeability, immune function, and the microbial metabolites in autistic people. We further discuss recent findings supporting the possible role of the gut microbiome in initiating epigenetic modifications and consider the potential role of this pathway in influencing the severity of ASD. Lastly, we summarize recent updates in microbiota-targeted therapies such as probiotics, prebiotics, dietary supplements, fecal microbiota transplantation, and microbiota transfer therapy. The findings of this paper reveal new insights into possible therapeutic interventions that may be used to reduce and cure ASD-related symptoms. However, well-designed research studies using large sample sizes are still required in this area of study. 相似文献
17.
Youssef Bouferraa Andrea Chedid Ghid Amhaz Ahmed El Lakkiss Deborah Mukherji Sally Temraz Ali Shamseddine 《International journal of molecular sciences》2021,22(15)
The introduction of immune checkpoint inhibitors has constituted a major revolution in the treatment of patients with cancer. In contrast with the traditional cytotoxic therapies that directly kill tumor cells, this treatment modality enhances the ability of the host’s immune system to recognize and target cancerous cells. While immune checkpoint inhibitors have been effective across multiple cancer types, overcoming resistance remains a key area of ongoing research. The gut microbiota and its role in cancer immunosurveillance have recently become a major field of study. Gut microbiota has been shown to have direct and systemic effects on cancer pathogenesis and hosts anti-tumor immune response. Many studies have also shown that the host microbiota profile plays an essential role in the response to immunotherapy, especially immune checkpoint inhibitors. As such, modulating this microbial environment has offered a potential path to overcome the resistance to immune checkpoint inhibitors. In this review, we will talk about the role of microbiota in cancer pathogenesis and immune-system activity. We will also discuss preclinical and clinical studies that have increased our understanding about the roles and the mechanisms through which microbiota influences the response to treatment with immune checkpoint inhibitors. 相似文献
18.
Nayla Munawar Aftab Ahmad Munir Ahmad Anwar Khalid Muhammad 《International journal of molecular sciences》2022,23(5)
Schizophrenia (SCZ) is a psychotic syndrome with well-defined signs and symptoms but indecisive causes and effective treatment. Unknown underpinning reasons and no cure of the disease profoundly elevate the risk of illness. Gut microbial dysbiosis related metabolic dysfunction is providing a new angle to look at the potential causes and treatment options for schizophrenia. Because of the number of side effects, including gut dysbiosis, of traditional antipsychotic drugs, new alternative therapeutic options are under consideration. We propose that non-pharmacotherapy using biotherapeutic products could be a potent treatment to improve cognitive impairment and other symptoms of schizophrenia. Use of live microorganisms (probiotics), fibers (prebiotics), and polyphenols alone or in a mixture can maintain gut microbial diversity and improve the two-way relationship of the gut microbiota and the central nervous system. Fiber and polyphenol induced management of gut microbiota may positively influence the gut–brain axis by increasing the level of brain-derived neurotrophic factors involved in schizophrenia. Furthermore, we endorse the need for comprehensive clinical assessment and follow-up of psychobiotic (pro and prebiotics) treatment in mental illness to estimate the level of target recovery and disability reduction in schizophrenia. 相似文献
19.
Federica Pizzo Zaira Maroccia Ivano Hammarberg Ferri Carla Fiorentini 《International journal of molecular sciences》2022,23(11)
The microbiota is increasingly recognized as a critical player in cancer onset and progression and response to cancer chemotherapy treatment. In recent years, several preclinical and clinical studies have evidenced the involvement of microbiota in lung cancer, one of the world’s deadliest cancers. However, the mechanisms by which the microbiota can impact this type of cancer and patient survival and response to treatments remain poorly investigated. In this review, the peculiarities of the gut and lung microbial ecosystems have been highlighted, and recent findings illustrating the possible mechanisms underlying the microbiota–lung cancer interaction and the host immune response have been discussed. In addition, the mucosal immune system has been identified as a crucial communication frame to ease interactive dynamics between the immune system and the microbiota. Finally, the use of specific next-generation intestinal probiotic strains in counteracting airway diseases has been evaluated. We believe that restoring homeostasis and the balance of bacterial microflora should become part of the routine of integrated cancer interventions, using probiotics, prebiotics, and postbiotics, and promoting a healthy diet and lifestyle. 相似文献
20.
Adela Dnu Laura Dumitrescu Antonia Lefter Delia Tulb Bogdan Ovidiu Popescu 《International journal of molecular sciences》2021,22(21)
Increasing evidence suggests that the gut microbiota and the brain are closely connected via the so-called gut–brain axis. Small intestinal bacterial overgrowth (SIBO) is a gut dysbiosis in which the small intestine is abundantly colonized by bacteria that are typically found in the colon. Though not a disease, it may result in intestinal symptoms caused by the accumulation of microbial gases in the intestine. Intestinal inflammation, malabsorption and vitamin imbalances may also develop. SIBO can be eradicated by one or several courses of antibiotics but reappears if the predisposing condition persists. Parkinson’s disease (PD) is a common neurodegenerative proteinopathy for which disease modifying interventions are not available. Sporadic forms may start in the gut years before the development of clinical features. Increased gastrointestinal transit time is present in most people with PD early during the course of the disease, predisposing to gut dysbiosis, including SIBO. The role that gut dysbiosis may play in the etiopathogenesis of PD is not fully understood yet. Here, we discuss the possibility that SIBO could contribute to the progression of PD, by promoting or preventing neurodegeneration, thus being a potential target for treatments aiming at slowing down the progression of PD. The direct symptomatic impact of SIBO and its impact on symptomatic medication are also briefly discussed. 相似文献