首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anti-angiogenic therapy is an old method to fight cancer that aims to abolish the nutrient and oxygen supply to the tumor cells through the decrease of the vascular network and the avoidance of new blood vessels formation. Most of the anti-angiogenic agents approved for cancer treatment rely on targeting vascular endothelial growth factor (VEGF) actions, as VEGF signaling is considered the main angiogenesis promotor. In addition to the control of angiogenesis, these drugs can potentiate immune therapy as VEGF also exhibits immunosuppressive functions. Despite the mechanistic rational that strongly supports the benefit of drugs to stop cancer progression, they revealed to be insufficient in most cases. We hypothesize that the rehabilitation of old drugs that interfere with mechanisms of angiogenesis related to tumor microenvironment might represent a promising strategy. In this review, we deepened research on the molecular mechanisms underlying anti-angiogenic strategies and their failure and went further into the alternative mechanisms that impact angiogenesis. We concluded that the combinatory targeting of alternative effectors of angiogenic pathways might be a putative solution for anti-angiogenic therapies.  相似文献   

2.
Approximately 30 years ago, endoglin was identified as a transforming growth factor (TGF)-β coreceptor with a crucial role in developmental biology and tumor angiogenesis. Its selectively high expression on tumor vessels and its correlation with poor survival in cancer patients led to the exploration of endoglin as a therapeutic target for cancer. The endoglin neutralizing antibody TRC105 (Carotuximab®, Tracon Pharmaceuticals (San Diego, CA, USA) was subsequently tested in a wide variety of preclinical cancer models before being tested in phase I-III clinical studies in cancer patients as both a monotherapy and in combination with other chemotherapeutic and anti-angiogenic therapies. The combined data of these studies have revealed new insights into the role of endoglin in angiogenesis and its expression and functional role on other cells in the tumor microenvironment. In this review, we will summarize the preclinical work, clinical trials and biomarker studies of TRC105 and explore what these studies have enabled us to learn and what questions remain unanswered.  相似文献   

3.
Tumor angiogenesis has been identified to play a critical role in tumor growth and tumor progression, and is regulated by a balance of angiogenic and anti-angiogenic cytokines. Among them VEGF (vascular endothelial growth factor) and its signaling through its receptors are of crucial relevance. Inhibition of VEGF signaling by monoclonal antibodies or small molecules (kinase inhibitors) has already been successfully established for the treatment of different cancer entities and multiple new drugs are being tested in clinical trials. However not all patients are likely to respond to these therapies, but to date there are no reliable biomarkers available to predict therapy response. Many studies integrated biomarker programs in their study protocols, thus several potential biomarkers have been identified which are currently under clinical investigation in prospective randomized studies. This review intends to give an overview of the described potential biomarkers as well as different imaging techniques such as ultrasound and magnetic resonance imaging that can indicate benefit, resistance and toxicity to anti-angiogenic therapies.  相似文献   

4.
Pituitary Gonadotropin-Releasing Hormone receptors (GnRH-R) mediate the activity of the hypothalamic decapeptide GnRH, thus playing a key role in the regulation of the reproductive axis. Early-stage prostate cancer (PCa) is dependent on serum androgen levels, and androgen-deprivation therapy (ADT), based on GnRH agonists and antagonists, represents the standard therapeutic approach for PCa patients. Unfortunately, the tumor often progresses towards the more aggressive castration-resistant prostate cancer (CRPC) stage. GnRH receptors are also expressed in CRPC tissues, where their binding to both GnRH agonists and antagonists is associated with significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic effects, mediated by the Gαi/cAMP signaling cascade. GnRH agonists and antagonists are now considered as an effective therapeutic strategy for CRPC patients with many clinical trials demonstrating that the combined use of these drugs with standard therapies (i.e., docetaxel, enzalutamide, abiraterone) significantly improves disease-free survival. In this context, GnRH-based bioconjugates (cytotoxic drugs covalently linked to a GnRH-based decapeptide) have been recently developed. The rationale of this treatment is that the GnRH peptide selectively binds to its receptors, delivering the cytotoxic drug to CRPC cells while sparing nontumor cells. Some of these compounds have already entered clinical trials.  相似文献   

5.
As our understanding of the molecular pathways driving tumorigenesis improves and more druggable targets are identified, we have witnessed a concomitant increase in the development and production of novel molecularly targeted agents. Radiotherapy is commonly used in the treatment of various malignancies with a prominent role in the care of prostate cancer patients, and efforts to improve the therapeutic ratio of radiation by technologic and pharmacologic means have led to important advances in cancer care. One promising approach is to combine molecularly targeted systemic agents with radiotherapy to improve tumor response rates and likelihood of durable control. This review first explores the limitations of preclinical studies as well as barriers to successful implementation of clinical trials with radiosensitizers. Special considerations related to and recommendations for the design of preclinical studies and clinical trials involving molecularly targeted agents combined with radiotherapy are provided. We then apply these concepts by reviewing a representative set of targeted therapies that show promise as radiosensitizers in the treatment of prostate cancer.  相似文献   

6.
7.
Tumor angiogenesis is widely recognized as one of the “hallmarks of cancer”. Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1) upregulation of compensatory/alternative pathways for angiogenesis; (2) vasculogenic mimicry; and (3) vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses.  相似文献   

8.
Prostate cancer is the most frequent malignancy in the worldwide male population; it is also one of the most common among all the leading cancer-related death causes. In the last two decades, the therapeutic scenario of metastatic castration-resistant prostate cancer has been enriched by the use of chemotherapy and androgen receptor signaling inhibitors (ARSI) and, more recently, by immunotherapy and poly(ADP–ribose) polymerase (PARP) inhibitors. At the same time, several trials have shown the survival benefits related to the administration of novel ARSIs among patients with non-castration-resistant metastatic disease along with nonmetastatic castration-resistant cancer too. Consequently, the therapeutic course of this malignancy has been radically expanded, ensuring survival benefits never seen before. Among the more recently emerging agents, the so-called “antibody–drug conjugates” (ADCs) are noteworthy because of their clinical practice changing outcomes obtained in the management of other malignancies (including breast cancer). The ADCs are novel compounds consisting of cytotoxic agents (also known as the payload) linked to specific antibodies able to recognize antigens expressed over cancer cells’ surfaces. As for prostate cancer, researchers are focusing on STEAP1, TROP2, PSMA, CD46 and B7-H3 as optimal antigens which may be targeted by ADCs. In this paper, we review the pivotal trials that have currently changed the therapeutic approach to prostate cancer, both in the nonmetastatic castration-resistant and metastatic settings. Therefore, we focus on recently published and ongoing trials designed to investigate the clinical activity of ADCs against prostate malignancy, characterizing these agents. Lastly, we briefly discuss some ADCs-related issues with corresponding strategies to overwhelm them, along with future perspectives for these promising novel compounds.  相似文献   

9.
Activation of Hedgehog (Hh) signaling is implicated in the development and progression of several tumor types, including prostate cancer, which is still the most common non-skin malignancy and the third leading cause of cancer-related mortality in men in industrialized countries worldwide. Several studies have indicated that the Hh pathway plays a crucial role in the development as well as in the progression of this disease to more aggressive and even therapy-resistant disease states. Moreover, preclinical data have shown that inhibition of Hh signaling has the potential to reduce prostate cancer invasiveness and metastatic potential. Clinical trials investigating the benefit of Hh inhibitors in patients with prostate cancer have recently been initiated. However, acquired drug resistance has already been observed in other tumor types after long-term Hh inhibition. Therefore, combining Hh inhibitors with ionizing radiation, chemotherapy or other molecular targeted agents could represent an alternative therapeutic strategy. In this review, we will highlight the role of Hh signaling in the development and progression of prostate cancer and summarize the different therapeutic applications of Hedgehog inhibition.  相似文献   

10.
Prostate cancer (PC) is the second most common cancer in men worldwide. Due to the large-scale sequencing efforts, there is currently a better understanding of the genomic landscape of PC. The identification of defects in DNA repair genes has led to clinical studies that provide a strong rationale for developing poly (ADP-ribose) polymerase (PARP) inhibitors and DNA-damaging agents in this molecularly defined subset of patients. The identification of molecularly defined subgroups of patients has also other clinical implications; for example, we now know that carriers of breast cancer 2 (BRCA2) pathogenic sequence variants (PSVs) have increased levels of serum prostate specific antigen (PSA) at diagnosis, increased proportion of high Gleason tumors, elevated rates of nodal and distant metastases, and high recurrence rate; BRCA2 PSVs confer lower overall survival (OS). Distinct tumor PSV, methylation, and expression patterns have been identified in BRCA2 compared with non-BRCA2 mutant prostate tumors. Several DNA damage response and repair (DDR)-targeting agents are currently being evaluated either as single agents or in combination in patients with PC. In this review article, we highlight the biology and clinical implications of deleterious inherited or acquired DNA repair pathway aberrations in PC and offer an overview of new agents being developed for the treatment of PC.  相似文献   

11.
Angiogenesis is one of the hallmarks of cancer. Several studies have shown that vascular endothelium growth factor (VEGF) plays a leading role in angiogenesis progression. Antiangiogenic medication has gained substantial recognition and is commonly administered in many forms of human cancer, leading to a rising interest in cancer therapy. However, this treatment method can lead to a deteriorating outcome of resistance, invasion, distant metastasis, and overall survival relative to its cytotoxicity. Furthermore, there are significant obstacles in tracking the efficacy of antiangiogenic treatments by incorporating positive biomarkers into clinical settings. These shortcomings underline the essential need to identify additional angiogenic inhibitors that target numerous angiogenic factors or to develop a new method for drug delivery of current inhibitors. The great benefits of nanoparticles are their potential, based on their specific properties, to be effective mechanisms that concentrate on the biological system and control various important functions. Among various therapeutic approaches, nanotechnology has emerged as a new strategy for treating different cancer types. This article attempts to demonstrate the huge potential for targeted nanoparticles and their molecular imaging applications. Notably, several nanoparticles have been developed and engineered to demonstrate antiangiogenic features. This nanomedicine could effectively treat a number of cancers using antiangiogenic therapies as an alternative approach. We also discuss the latest antiangiogenic and nanotherapeutic strategies and highlight tumor vessels and their microenvironments.  相似文献   

12.
Breast cancer is one of the leading causes of death in women. With improvements in early-stage diagnosis and targeted therapies, there has been an improvement in the overall survival rate in breast cancer over the past decade. Despite the development of targeted therapies, tyrosine kinase inhibitors, as well as monoclonal antibodies and their toxin conjugates, all metastatic tumors develop resistance, and nearly one-third of HER2+ breast cancer patients develop resistance to all these therapies. Although antibody therapy has shown promising results in breast cancer patients, passive immunotherapy approaches have limitations and need continuous administration over a long period. Vaccine therapy introduces antigens that act on cancer cells causing prolonged activation of the immune system. In particular, cancer relapse could be avoided due to the presence of a longer period of immunological memory with an effective vaccine that can protect against various tumor antigens. Cancer vaccines are broadly classified as preventive and therapeutic. Preventive vaccines are used to ward off any future infections and therapeutic vaccines are used to treat a person with active disease. In this article, we provided details about the tumor environment, different types of vaccines, their advantages and disadvantages, and the current status of various vaccine candidates with a focus on vaccines for breast cancer. Current data indicate that therapeutic vaccines themselves have limitations in terms of efficacy and are used in combination with other chemotherapeutic or targeting agents. The majority of breast cancer vaccines are undergoing clinical trials and the next decade will see the fruitfulness of breast cancer vaccine therapy.  相似文献   

13.
Gastrointestinal (GI) cancer constitutes a highly lethal entity among malignancies in the last decades and is still a major challenge for cancer therapeutic options. Despite the current combinational treatment strategies, including chemotherapy, surgery, radiotherapy, and targeted therapies, the survival rates remain notably low for patients with advanced disease. A better knowledge of the molecular mechanisms that influence tumor progression and the development of optimal therapeutic strategies for GI malignancies are urgently needed. Currently, the development and the assessment of the efficacy of immunotherapeutic agents in GI cancer are in the spotlight of several clinical trials. Thus, several new modalities and combinational treatments with other anti-neoplastic agents have been identified and evaluated for their efficiency in cancer management, including immune checkpoint inhibitors, adoptive cell transfer, chimeric antigen receptor (CAR)-T cell therapy, cancer vaccines, and/or combinations thereof. Understanding the interrelation among the tumor microenvironment, cancer progression, and immune resistance is pivotal for the optimal therapeutic management of all gastrointestinal solid tumors. This review will shed light on the recent advances and future directions of immunotherapy for malignant tumors of the GI system.  相似文献   

14.
Prostate cancer (PCa) is the second most frequent cancer and the fifth leading cause of cancer death in men worldwide. If local PCa presents a favorable prognosis, available treatments for advanced PCa display limiting benefits due to therapeutic resistances. Nucleolin (NCL) is a ubiquitous protein involved in numerous cell processes, such as ribosome biogenesis, cell cycles, or angiogenesis. NCL is overexpressed in several tumor types in which it has been proposed as a diagnostic and prognostic biomarker. In PCa, NCL has mainly been studied as a target for new therapeutic agents. Nevertheless, little data are available concerning its expression in patient tissues. Here, we investigated the expression of NCL using a new cohort from Mondor Hospital and data from published cohorts. Results were then compared with NCL expression using in vitro models. NCL was overexpressed in PCa tissues compared to the normal tissues, but no prognostic values were demonstrated. Nine genes were highly co-expressed with NCL in patient tissues and tumor prostate cell lines. Our data demonstrate that NCL is an interesting diagnostic biomarker and propose a signature of genes co-expressed with NCL.  相似文献   

15.
Triple negative breast cancer (TNBC) is an aggressive subtype of the disease with poor clinical outcomes and limited therapeutic options. Immune checkpoint blockade (CP) has surged to the forefront of cancer therapies with widespread clinical success in a variety of cancer types. However, the percentage of TNBC patients that benefit from CP as a monotherapy is low, and clinical trials have shown the need for combined therapeutic modalities. Specifically, there has been interest in combining CP therapy with radiation therapy where clinical studies primarily with external beam have suggested their therapeutic synergy, contributing to the development of anti-tumor immunity. Here, we have developed a therapeutic platform combining radionuclide therapy (RT) and immunotherapy utilizing a radiolabeled biomolecule and CP in an E0771 murine TNBC tumor model. Survival studies show that while neither monotherapy is able to improve therapeutic outcomes, the combination of RT + CP extended overall survival. Histologic analysis showed that RT + CP increased necrotic tissue within the tumor and decreased levels of F4/80+ macrophages. Flow cytometry analysis of the peripheral blood also showed that RT + CP suppressed macrophages and myeloid-derived suppressive cells, both of which actively contribute to immune escape and tumor relapse.  相似文献   

16.
Prostate cancer (PC) is a leading cause of morbidity and mortality among men worldwide. Molecular biomarkers work in conjunction with existing clinicopathologic tools to help physicians decide who to biopsy, re-biopsy, treat, or re-treat. The past decade has witnessed the commercialization of multiple PC protein biomarkers with improved performance, remarkable progress in proteomic technologies for global discovery and targeted validation of novel protein biomarkers from clinical specimens, and the emergence of novel, promising PC protein biomarkers. In this review, we summarize these advances and discuss the challenges and potential solutions for identifying and validating clinically useful protein biomarkers in PC diagnosis and prognosis. The identification of multi-protein biomarkers with high sensitivity and specificity, as well as their integration with clinicopathologic parameters, imaging, and other molecular biomarkers, bodes well for optimal personalized management of PC patients.  相似文献   

17.
HER2 targeted therapies have significantly improved prognosis of HER2-positive breast and gastric cancer. HER2 overexpression and mutation is the pathogenic driver in non-small cell lung cancer (NSCLC) and colorectal cancer, however, to date, there are no approved HER2-targeted therapies with these indications. Trastuzumab deruxtecan (T-DXd) is a novel HER2-directed antibody drug conjugate showing significant anti-tumor activity in heavily pre-treated HER2-positive breast and gastric cancer patients. Preliminary data have shown promising objective response rates in patients with HER2-positive NSCLC and colorectal cancer. T-DXd has an acceptable safety profile, however with concerns regarding potentially serious treatment-emergent adverse events. In this review we focus on the pharmacologic characteristics and toxicity profile of T-Dxd, and provide an update on the most recent results of clinical trials of T-DXd in solid tumors. The referenced papers were selected through a PubMed search performed on 16 March 2021 with the following searching terms: T-DXd and breast cancer, or gastric cancer, or non-small cell lung cancer (NSCLC), or colorectal cancer. Oral presentation, abstracts, and posters presented at the American Society of Clinical Oncology (ASCO, Alexandria, VA, USA) 2020 and the European Society for Medical Oncology (ESMO, Lugano, Switzerland) 2020 annual meetings were retrieved for data on T-DXd. We also overview ongoing research and data of combination therapies currently under investigation, which will impact on future therapeutic strategies. Clinicaltrials.gov was searched to identify ongoing clinical trials of T-DXd alone or in combination in solid tumors.  相似文献   

18.
The blockade of immune checkpoints (ICPs), such as cytotoxic T lymphocyte associated protein-4 (CTLA-4) and programmed death-1 (PD-1) and its ligand (PD-L1), has propelled the field of immuno-oncology into its current era. Drugs targeting these ICPs have improved clinical outcome in a number of patients with solid and hematological cancers. Nonetheless, some patients have no benefit from these ICP-blocking therapies. This observation has instigated research into alternative pathways that are responsible for the escape of cancer cells from anti-cancer immune responses. From this research, a number of molecules have emerged as promising therapeutic targets, including lymphocyte activating gene-3 (LAG-3), a next-generation ICP. We will review the current knowledge on the biological activity of LAG-3 and linked herewith its expression on activated immune cells. Moreover, we will discuss the prognostic value of LAG-3 and how LAG-3 expression in tumors can be monitored, which is an aspect that is of utmost importance, as the blockade of LAG-3 is actively pursued in clinical trials.  相似文献   

19.
Despite significant improvements in clinical management, pancreatic cancer (PC) remains one of the deadliest cancer types, as it is prone to late detection with extreme metastatic properties. The recent findings that pancreatic cancer stem cells (PaCSCs) contribute to the tumorigenesis, progression, and chemoresistance have offered significant insight into the cancer malignancy and development of precise therapies. However, the heterogeneity of cancer and signaling pathways that regulate PC have posed limitations in the effective targeting of the PaCSCs. In this regard, the role for K-RAS, TP53, Transforming Growth Factor-β, hedgehog, Wnt and Notch and other signaling pathways in PC progression is well documented. In this review, we discuss the role of PaCSCs, the underlying molecular and signaling pathways that help promote pancreatic cancer development and metastasis with a specific focus on the regulation of PaCSCs. We also discuss the therapeutic approaches that target different PaCSCs, intricate mechanisms, and therapeutic opportunities to eliminate heterogeneous PaCSCs populations in pancreatic cancer.  相似文献   

20.
Although anti-angiogenic agents offer great therapeutic potential, preclinical and clinical studies suggest that these agents, used as monotherapies, have a delayed onset of activity and may have only limited effects on advanced malignancies. Multimodality targeted polymer therapeutics that include anti-angiogenic agents and chemotherapeutics offer the potential for improved efficacy and diminished toxicity in the treatment of cancer and other angiogenesis-dependent diseases. We have recently designed and characterized novel combined anti-angiogenic and antitumor polymer–drug conjugates that target both the tumor and its microenvironment. These conjugates include combined anti-angiogenic and chemotherapeutic drugs, such as TNP-470 and paclitaxel, respectively. Several conjugates also incorporate bisphosphonates as targeting moieties for bone metastases and osteosarcomas or RGD peptidomimetics that target integrins overexpressed on tumor endothelial cells and several tumor cells. Using molecular imaging techniques, we have successfully established dormant and fast-growing tumor mouse models to intravitally non-invasively follow-up tumor progression and response to novel polymer therapeutics. Our results point at our polymer therapeutics as novel bi-specific conjugates targeting both the tumor epithelial and endothelial compartments, warranting their use on a wide spectrum of primary as well as metastatic tumors. The use of these novel architectures will potentially shed light on the molecular mechanisms underlying tumor dormancy and hopefully transform cancer into a chronically-manageable disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号