首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李全杏 《世界农药》2013,35(4):46-49
点滴法测定了吡虫啉、噻虫啉和噻虫胺对桑天牛成虫室内毒力,并将3种药剂的亚致死剂量(即LC20值)作用于桑天牛,观察记录了15d内五对桑天牛每日的产卵量及卵的孵化率。结果表明,3种烟碱类杀虫剂对桑天牛的毒性大小依次为:噻虫胺〉噻虫啉〉吡虫啉,LC50值分别为59.287、81.562和145.398mg/L。3种烟碱类杀虫剂对桑天牛均表现出良好的防治效果,同时3种烟碱类杀虫剂的亚致死剂量对桑天牛的日产卵量和卵的孵化率均表现出抑制作用,以第二代烟碱类杀虫剂噻虫胺对桑天牛产卵及卵孵化率的抑制作用最为明显。  相似文献   

2.
8个烟碱类杀虫剂生物活性比较研究   总被引:1,自引:0,他引:1  
比较吡虫啉、啶虫脒、烯啶虫胺、噻虫啉、噻虫嗪、噻虫胺、氯噻啉、呋虫胺等8个烟碱类杀虫剂的生物活性,为科学应用提供参考。采用浸渍法、浸稻苗法、浸叶碟法等对豆蚜、褐飞虱、二化螟、小菜蛾进行室内毒力测定,对活性进行分组,并进行了结构与活性关系初步分析。结果表明:烟碱类药剂对豆蚜LC50值为0.03140.3505 mg/L,对抗吡虫啉的褐飞虱LC50值为0.565 70.3505 mg/L,对抗吡虫啉的褐飞虱LC50值为0.565 749.404 6 mg/L,对二化螟LC50值为7.517649.404 6 mg/L,对二化螟LC50值为7.5176139.0369 mg/L,对小菜蛾LC50值为10.533 4139.0369 mg/L,对小菜蛾LC50值为10.533 4100 mg/L。烟碱基闭环与开环、取代杂环等结构特点对药剂活性有影响。烟碱类药剂对同翅目害虫的活性显著优于对鳞翅目害虫的活性。在实际应用中可以采取轮用策略和兼治策略推进药剂的科学合理使用,还可加强研发种子处理剂等。  相似文献   

3.
Neonicotinoids are systemic insecticides commonly used for pest control in agriculture and veterinary applications. Due to their widespread use, neonicotinoid insecticides (neonics) are found in different environmental compartments, including water, soils, and biota, in which their high toxicity towards non-target organisms is a matter of great concern. Given their widespread use and high toxicity, the development of strategies to remove neonics, while avoiding further environmental contamination is of high priority. In this work, ionic-liquid-based materials, comprising silica modified with tetraalkylammonium cations and the chloride anion, were explored as alternative adsorbent materials to remove four neonics insecticides, namely imidacloprid, acetamiprid, thiacloprid, and thiamethoxam, from aqueous media. These materials or supported ionic liquids (SILs) were first synthesized and chemically characterized and further applied in adsorption studies. It was found that the equilibrium concentration of the adsorbate in the solid phase decreases with the decrease in the SIL cation alkyl chain length, reinforcing the relevance of hydrophobic interactions between ionic liquids (ILs) and insecticides. The best-identified SIL for the adsorption of the studied insecticides corresponds to silica modified with propyltrioctylammonium chloride ([Si][N3888]Cl). The saturation of SILs was reached in 5 min or less, showing their fast adsorption rate towards all insecticides, in contrast with activated carbon (benchmark) that requires 40 to 60 min. The best fitting of the experimental kinetic data was achieved with the Pseudo Second-Order model, meaning that the adsorption process is controlled at the solid-liquid interface. On the other hand, the best fitting of the experimental isotherm data is given by the Freundlich isotherm model, revealing that multiple layers of insecticides onto the SIL surface may occur. The continuous removal efficiency of the best SIL ([Si][N3888]Cl) by solid-phase extraction was finally appraised, with the maximum adsorption capacity decreasing in the following sequence: imidacloprid > thiacloprid > thiamethoxam > acetamiprid. Based on real reported values, under ideal conditions, 1 g of [Si][N3888]Cl is able to treat at least 106 m3 of wastewater and water from wetland contaminated with the studied neonics. In summary, the enhanced adsorption capacity of SILs for a broad diversity of neonics was demonstrated, reinforcing the usefulness of these materials for their removal from aqueous matrices and thus contributing to preventing their introduction into the ecosystems and reducing their detrimental effects in the environment and human health.  相似文献   

4.
Different approaches have been reported to enhance penetration of small drugs through physiological barriers; among them is the self-assembly drug conjugates preparation that shows to be a promising approach to improve activity and penetration, as well as to reduce side effects. In recent years, the use of drug-conjugates, usually obtained by covalent coupling of a drug with biocompatible lipid moieties to form nanoparticles, has gained considerable attention. Natural products isolated from plants have been a successful source of potential drug leads with unique structural diversity. In the present work three molecules derived from natural products were employed as lead molecules for the synthesis of self-assembled nanoparticles. The first molecule is the cytotoxic royleanone 7α-acetoxy-6β-hydroxyroyleanone (Roy, 1) that has been isolated from hairy coleus (Plectranthus hadiensis (Forssk.) Schweinf). ex Sprenger leaves in a large amount. This royleanone, its hemisynthetic derivative 7α-acetoxy-6β-hydroxy-12-benzoyloxyroyleanone (12BzRoy, 2) and 6,7-dehydroroyleanone (DHR, 3), isolated from the essential oil of thicket coleus (P. madagascariensis (Pers.) Benth.) were employed in this study. The royleanones were conjugated with squalene (sq), oleic acid (OA), and/or 1-bromododecane (BD) self-assembly inducers. Roy-OA, DHR-sq, and 12BzRoy-sq conjugates were successfully synthesized and characterized. The cytotoxic effect of DHR-sq was previously assessed on three human cell lines: NCI-H460 (IC50 74.0 ± 2.2 µM), NCI-H460/R (IC50 147.3 ± 3.7 µM), and MRC-5 (IC50 127.3 ± 7.3 µM), and in this work Roy-OA NPs was assayed against Vero-E6 cells at different concentrations (0.05, 0.1, and 0.2 mg/mL). The cytotoxicity of DHR-sq NPs was lower when compared with DHR alone in these cell lines: NCI-H460 (IC50 10.3 ± 0.5 µM), NCI-H460/R (IC50 10.6 ± 0.4 µM), and MRC-5 (IC5016.9 ± 0.5 µM). The same results were observed with Roy-OA NPs against Vero-E6 cells as was found to be less cytotoxic than Roy alone in all the concentrations tested. From the obtained DLS results, 12BzRoy-sq assemblies were not in the nano range, although Roy-OA NP assemblies show a promising size (509.33 nm), Pdl (0.249), zeta potential (−46.2 mV), and spherical morphology from SEM. In addition, these NPs had a low release of Roy at physiological pH 7.4 after 24 h. These results suggest the nano assemblies can act as prodrugs for the release of cytotoxic lead molecules.  相似文献   

5.
杀虫剂吡虫啉的合成进展   总被引:1,自引:0,他引:1  
程磊磊 《安徽化工》2011,37(5):12-14
吡虫啉是一种高效、低毒、低污染、高选择性的烟碱类杀虫剂。在介绍吡虫啉性质的基础上,着重讨论了吡虫啉重要中间体2-氯-5-氯甲基吡啶的制备和吡虫啉的合成路线,同时展望了吡虫啉的市场前景。  相似文献   

6.
PLG-007 is a developmental therapeutic compound that has been clinically shown to reduce the magnitude of postprandial glucose excursions and has the potential to be an adjunct treatment for diabetes and inflammatory-related diseases. The present investigation is aimed at understanding the molecular mechanism of action of PLG-007 and its galactomannan (GM) components GMα and GMβ (in a 1:4 mass ratio, respectively) on enzyme (i.e., α-amylase, maltase, and lactase) hydrolysis of glucose polymers using colorimetric assays and 13C HSQC NMR spectroscopy. The starch–iodine colorimetric assay indicated that GMα strongly inhibits α-amylase activity (~16-fold more potent than GMβ) and thus is the primary active component in PLG-007. 13C HSQC experiments, used to follow the α-amylase-mediated hydrolysis of starch and amylopectin, further demonstrate the α-amylase inhibitory effect of GMα via α-amylase-mediated hydrolysis of starch and amylopectin. Maltohexaose (MT6) was used to circumvent the relative kinetic complexity of starch/amylopectin degradation in Michaelis–Menten analyses. The Vmax, KM, and Ki parameters were determined using peak volume integrals from 13C HSQC NMR spectra. In the presence of PLG-007 with α-amylase and MT6, the increase in KM from 7.5 ± 0.6 × 10−3 M (control) to 21 ± 1.4 × 10−3 M, with no significant change in Vmax, indicates that PLG-007 is a competitive inhibitor of α-amylase. Using KM values, Ki was estimated to be 2.1 ± 0.9 × 10−6 M; however, the microscopic Ki value of GMα is expected to be larger as the binding stoichiometry is likely to be greater than 1:1. Colorimetric assays also demonstrated that GMα is a competitive inhibitor of the enzymes maltase and lactase. Overall, this study provides insight as to how PLG-007 (GMα) is likely to function in vivo.  相似文献   

7.
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are associated with obesity. They are accompanied by increased levels of free cholesterol in the liver. Most free cholesterol resides within the plasma membrane. We assessed the impact of adding or removing free cholesterol on the function and localization of two hepatocellular uptake transporters: the Na+/taurocholate cotransporting polypeptide (NTCP) and the organic cation transporter 1 (OCT1). We used a cholesterol–MCD complex (cholesterol) to add cholesterol and methyl-β-cyclodextrin (MCD) to remove cholesterol. Our results demonstrate that adding cholesterol decreases NTCP capacity from 132 ± 20 to 69 ± 37 µL/mg/min and OCT1 capacity from 209 ± 66 to 125 ± 26 µL/mg/min. Removing cholesterol increased NTCP and OCT1 capacity to 224 ± 65 and 279 ± 20 µL/mg/min, respectively. In addition, adding cholesterol increased the localization of NTCP within lipid rafts, while adding or removing cholesterol increased OCT1 localization in lipid rafts. These results demonstrate that increased cholesterol levels can impair NTCP and OCT1 function, suggesting that the free cholesterol content of the liver can alter bile acid and drug uptake into the liver. This could explain the increased plasma bile acid levels in NAFLD and NASH patients and potentially lead to altered drug disposition.  相似文献   

8.
A growing body of evidence suggests a pathogenic role for pro-inflammatory T helper 17 cells (Th17) in several autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type I diabetes, and psoriasis—diseases for which no curative treatment is currently available. The nuclear retinoic acid receptor–related orphan receptors alpha and gamma (RORα/γ), in particular the truncated isoform RORγt that is specifically expressed in the thymus, play a critical role in the activation of a pro-inflammatory Th17 response, and RORγ inverse agonists have shown promise as negative regulators of Th17 for the treatment of autoimmune diseases. Our study underscores the screening of a large combinatorial library of 1,5-disubstituted acylated 2-amino-4,5-dihydroimidazoles using a demonstrated synthetic and screening approach and the utility of the positional scanning libraries strategy for the rapid identification of a novel class of ROR inhibitors. We identified compound 1295-273 with the highest activity against RORγ (3.3 µM IC50) in this series, and almost a two-fold selectivity towards this receptor isoform, with 5.3 and 5.8 µM IC50 against RORα and RORβ cells, respectively.  相似文献   

9.
Male patients with Fabry disease (FD) are at high risk for the formation of antibodies to recombinant α-galactosidase A (AGAL), used for enzyme replacement therapy. Due to the rapid disease progression, the identification of patients at risk is highly warranted. However, currently suitable references and standardized protocols for anti-drug antibodies (ADA) determination do not exist. Here we generate a comprehensive patient-derived antibody mixture as a reference, allowing ELISA-based quantification of antibody titers from individual blood samples. Serum samples of 22 male patients with FD and ADAs against AGAL were pooled and purified by immune adsorption. ADA-affinities against agalsidase-α, agalsidase-β and Moss-AGAL were measured by quartz crystal microbalance with dissipation monitoring (QCM-D). AGAL-specific immune adsorption generated a polyclonal ADA mixture showing a concentration-dependent binding and inhibition of AGAL. Titers in raw sera and from purified total IgGs (r2 = 0.9063 and r2 = 0.8952, both p < 0.0001) correlated with the individual inhibitory capacities of ADAs. QCM-D measurements demonstrated comparable affinities of the reference antibody for agalsidase-α, agalsidase-β and Moss-AGAL (KD: 1.94 ± 0.11 µM, 2.46 ± 0.21 µM, and 1.33 ± 0.09 µM, respectively). The reference antibody allows the ELISA-based ADA titer determination and quantification of absolute concentrations. Furthermore, ADAs from patients with FD have comparable affinities to agalsidase-α, agalsidase-β and Moss-AGAL.  相似文献   

10.
There is growing evidence that repurposed drugs demonstrate excellent efficacy against many cancers, while facilitating accelerated drug development process. In this study, bedaquiline (BDQ), an FDA approved anti-mycobacterial agent, was repurposed and an inhalable cyclodextrin complex formulation was developed to explore its anti-cancer activity in non-small cell lung cancer (NSCLC). A sulfobutyl ether derivative of β-cyclodextrin (SBE-β-CD) was selected based on phase solubility studies and molecular modeling to prepare an inclusion complex of BDQ and cyclodextrin. Aqueous solubility of BDQ was increased by 2.8 × 103-fold after complexation with SBE-β-CD, as compared to its intrinsic solubility. Solid-state characterization studies confirmed the successful incorporation of BDQ in the SBE-β-CD cavity. In vitro lung deposition study results demonstrated excellent inhalable properties (mass median aerodynamic diameter: 2.9 ± 0.6 µm (<5 µm) and fine particle fraction: 83.3 ± 3.8%) of BDQ-CD complex. Accelerated stability studies showed BDQ-CD complex to be stable up to 3 weeks. From cytotoxicity studies, a slight enhancement in the anti-cancer efficacy was observed with BDQ-cyclodextrin complex, compared to BDQ alone in H1299 cell line. The IC50 values for BDQ and BDQ-CD complex were found to be ~40 µM in case of H1299 cell line at 72 h, whereas BDQ/BDQ-CD were not found to be cytotoxic up to concentrations of 50 µM in A549 cell line. Taken together, BDQ-CD complex offers a promising inhalation strategy with efficient lung deposition and cytotoxicity for NSCLC treatment.  相似文献   

11.
12.
13.
Mutations the in human DJ-1 (hDJ-1) gene are associated with early-onset autosomal recessive forms of Parkinson’s disease (PD). hDJ-1/parkinsonism associated deglycase (PARK7) is a cytoprotective multi-functional protein that contains a conserved cysteine-protease domain. Given that cysteine-proteases can act on both amide and ester substrates, we surmised that hDJ-1 possessed cysteine-mediated esterase activity. To test this hypothesis, hDJ-1 was overexpressed, purified and tested for activity towards 4-nitrophenyl acetate (pNPA) as µmol of pNPA hydrolyzed/min/mg·protein (U/mg protein). hDJ-1 showed maximum reaction velocity esterase activity (Vmax = 235.10 ± 12.00 U/mg protein), with a sigmoidal fit (S0.5 = 0.55 ± 0.040 mM) and apparent positive cooperativity (Hill coefficient of 2.05 ± 0.28). A PD-associated mutant of DJ-1 (M26I) lacked activity. Unlike its protease activity which is inactivated by reactive oxygen species (ROS), esterase activity of hDJ-1 is enhanced upon exposure to low concentrations of hydrogen peroxide (<10 µM) and plateaus at elevated concentrations (>100 µM) suggesting that its activity is resistant to oxidative stress. Esterase activity of DJ-1 requires oxidation of catalytic cysteines, as chemically protecting cysteines blocked its activity whereas an oxido-mimetic mutant of DJ-1 (C106D) exhibited robust esterase activity. Molecular docking studies suggest that C106 and L126 within its catalytic site interact with esterase substrates. Overall, our data show that hDJ-1 contains intrinsic redox-sensitive esterase activity that is abolished in a PD-associated mutant form of the hDJ-1 protein.  相似文献   

14.
[目的]探明柑橘木虱在新烟碱类杀虫剂之间是否存在交互抗药性,为开发和应用这类杀虫剂提供依据。[方法]用药膜法测定了不同来源的柑橘木虱成虫对吡虫啉、噻虫嗪、呋虫胺的LC50、LC95和抗性指数。[结果]已对吡虫啉、啶虫脒产生抗药性的柑橘木虱种群,虽然从未施用过噻虫嗪、呋虫胺和其他新烟碱类杀虫剂,但对它们的抗性倍数也已达低抗至中等抗性水平。[结论]柑橘木虱在新烟碱类杀虫剂噻虫嗪、呋虫胺、吡虫啉、啶虫脒之间可能存在交互抗性。  相似文献   

15.
The coronavirus disease 2019 (COVID-19) pandemic with high infectivity and mortality has caused severe social and economic impacts worldwide. Growing reports of COVID-19 patients with multi-organ damage indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) may also disturb the cardiovascular system. Herein, we used human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) as the in vitro platform to examine the consequence of SARS-CoV2 infection on iCMs. Differentiated iCMs expressed the primary SARS-CoV2 receptor angiotensin-converting enzyme-II (ACE2) and the transmembrane protease serine type 2 (TMPRSS2) receptor suggesting the susceptibility of iCMs to SARS-CoV2. Following the infection of iCMs with SARS-CoV2, the viral nucleocapsid (N) protein was detected in the host cells, demonstrating the successful infection. Bioinformatics analysis revealed that the SARS-CoV2 infection upregulates several inflammation-related genes, including the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The pretreatment of iCMs with TNF-α for 24 h, significantly increased the expression of ACE2 and TMPRSS2, SASR-CoV2 entry receptors. The TNF-α pretreatment enhanced the entry of GFP-expressing SARS-CoV2 pseudovirus into iCMs, and the neutralization of TNF-α ameliorated the TNF-α-enhanced viral entry. Collectively, SARS-CoV2 elevated TNF-α expression, which in turn enhanced the SARS-CoV2 viral entry. Our findings suggest that, TNF-α may participate in the cytokine storm and aggravate the myocardial damage in COVID-19 patients.  相似文献   

16.
Inhibition of the molecular chaperone heat shock protein 90 (Hsp90) represents a promising approach for cancer treatment. BIIB021 is a highly potent Hsp90 inhibitor with remarkable anticancer activity; however, its clinical application is limited by lack of potency and response. In this study, we aimed to investigate the impact of replacing the hydrophobic moiety of BIIB021, 4-methoxy-3,5-dimethylpyridine, with various five-membered ring structures on the binding to Hsp90. A focused array of N7/N9-substituted purines, featuring aromatic and non-aromatic rings, was designed, considering the size of hydrophobic pocket B in Hsp90 to obtain insights into their binding modes within the ATP binding site of Hsp90 in terms of π–π stacking interactions in pocket B as well as outer α-helix 4 configurations. The target molecules were synthesized and evaluated for their Hsp90α inhibitory activity in cell-free assays. Among the tested compounds, the isoxazole derivatives 6b and 6c, and the sole six-membered derivative 14 showed favorable Hsp90α inhibitory activity, with IC50 values of 1.76 µM, 0.203 µM, and 1.00 µM, respectively. Furthermore, compound 14 elicited promising anticancer activity against MCF-7, SK-BR-3, and HCT116 cell lines. The X-ray structures of compounds 4b, 6b, 6c, 8, and 14 bound to the N-terminal domain of Hsp90 were determined in order to understand the obtained results and to acquire additional structural insights, which might enable further optimization of BIIB021.  相似文献   

17.
The 20S proteasome, which is composed of layered α and β heptameric rings, is the core complex of the eukaryotic proteasome involved in proteolysis. The α7 subunit is a component of the α ring, and it self-assembles into a homo-tetradecamer consisting of two layers of α7 heptameric rings. However, the structure of the α7 double ring in solution has not been fully elucidated. We applied cryo-electron microscopy to delineate the structure of the α7 double ring in solution, revealing a structure different from the previously reported crystallographic model. The D7-symmetrical double ring was stacked with a 15° clockwise twist and a separation of 3 Å between the two rings. Two more conformations, dislocated and fully open, were also identified. Our observations suggest that the α7 double-ring structure fluctuates considerably in solution, allowing for the insertion of homologous α subunits, finally converting to the hetero-heptameric α rings in the 20S proteasome.  相似文献   

18.
Recent reports suggest a link between positive regulation of the Hippo pathway with bipolar disorder (BD), and the Hippo pathway is known to interact with multiple other signaling pathways previously associated with BD and other psychiatric disorders. In this study, neuronal-like NT2 cells were treated with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), valproate (0.5 mM), or vehicle control for 24 h. Genome-wide mRNA expression was quantified and analyzed using gene set enrichment analysis (GSEA), with genes belonging to Hippo, Wnt, Notch, TGF- β, and Hedgehog retrieved from the KEGG database. Five of the eight drugs downregulated the genes of the Hippo pathway and modulated several genes involved in the interacting pathways. We speculate that the regulation of these genes, especially by aripiprazole, clozapine, and quetiapine, results in a reduction of MAPK and NFκB pro-inflammatory signaling through modulation of Hippo, Wnt, and TGF-β pathways. We also employed connectivity map analysis to identify compounds that act on these pathways in a similar manner to the known psychiatric drugs. Thirty-six compounds were identified. The presence of antidepressants and antipsychotics validates our approach and reveals possible new targets for drug repurposing.  相似文献   

19.
20.
The improvement of cancer chemotherapy remains a major challenge, and thus new drugs are urgently required to develop new treatment regimes. Curcumin, a polyphenolic antioxidant derived from the rhizome of turmeric (Curcuma longa L.), has undergone extensive preclinical investigations and, thereby, displayed remarkable efficacy in vitro and in vivo against cancer and other disorders. However, pharmacological limitations of curcumin stimulated the synthesis of numerous novel curcumin analogs, which need to be evaluated for their therapeutic potential. In the present study, we calculated the binding affinities of 50 curcumin derivatives to known cancer-related target proteins of curcumin, i.e., epidermal growth factor receptor (EGFR) and nuclear factor κB (NF-κB) by using a molecular docking approach. The binding energies for EGFR were in a range of −12.12 (±0.21) to −7.34 (±0.07) kcal/mol and those for NF-κB ranged from −12.97 (±0.47) to −6.24 (±0.06) kcal/mol, indicating similar binding affinities of the curcumin compounds for both target proteins. The predicted receptor-ligand binding constants for EGFR and curcumin derivatives were in a range of 0.00013 (±0.00006) to 3.45 (±0.10) µM and for NF-κB in a range of 0.0004 (±0.0003) to 10.05 (±4.03) µM, indicating that the receptor-ligand binding was more stable for EGFR than for NF-κB. Twenty out of 50 curcumin compounds showed binding energies to NF-κB smaller than −10 kcal/mol, while curcumin as a lead compound revealed free binding energies of >−10 kcal/mol. Comparable data were obtained for EGFR: 15 out of 50 curcumin compounds were bound to EGFR with free binding energies of <−10 kcal/mol, while the binding affinity of curcumin itself was >−10 kcal/mol. This indicates that the derivatization of curcumin may indeed be a promising strategy to improve targe specificity and to obtain more effective anticancer drug candidates. The in silico results have been exemplarily validated using microscale thermophoresis. The bioactivity has been further investigated by using resazurin cell viability assay, lactate dehydrogenase assay, flow cytometric measurement of reactive oxygen species, and annexin V/propidium iodide assay. In conclusion, molecular docking represents a valuable approach to facilitate and speed up the identification of novel targeted curcumin-based drugs to treat cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号