共查询到20条相似文献,搜索用时 15 毫秒
1.
脑电信号由中枢神经系统产生,具有很高的真实性,但存在数据量少和数据复杂等问题.为提高脑电信号情感识别准确率,在脑电信号功率谱密度的基础上提出一种脑电位置信息重建的方法,使神经网络模型可以直接获取脑电信号中不易学习的位置信息.运用融合网络从原始的脑电信号中分别抽取时域特征和频域特征,根据频域信息重建脑电信号的位置信息,将时频域信息及位置信息进行融合,以获得更高的脑电信号情感分类准确率.在公开数据集DEAP上的实验结果表明,Valence和Arousal的二分类准确率分别达到86.31%和85.57%,与传统脑电信号情感识别方法相比,该方法分类准确率得到有效提高. 相似文献
2.
脑电信号由中枢神经系统产生,具有很高的真实性,但存在数据量少和数据复杂等问题.为提高脑电信号情感识别准确率,在脑电信号功率谱密度的基础上提出一种脑电位置信息重建的方法,使神经网络模型可以直接获取脑电信号中不易学习的位置信息.运用融合网络从原始的脑电信号中分别抽取时域特征和频域特征,根据频域信息重建脑电信号的位置信息,将时频域信息及位置信息进行融合,以获得更高的脑电信号情感分类准确率.在公开数据集DEAP上的实验结果表明,Valence和Arousal的二分类准确率分别达到86.31%和85.57%,与传统脑电信号情感识别方法相比,该方法分类准确率得到有效提高. 相似文献
3.
针对可视图(VG)算法存在噪声鲁棒性差的问题,提出一种改进的有限穿越可视图(LPVG)建网方法。该算法基于可视图(VG)算法的可视性准则,并设定有限穿越视距,将时间序列中满足条件的点连接起来,从而将时间序列映射为网络。首先,对LPVG算法进行性能分析;然后,将LPVG算法结合功率谱密度(PSD)算法应用到癫痫发作前、中、后脑电信号的识别上;最后,提取三种状态下癫痫脑电信号的LPVG网络特征参数,研究癫痫对网络拓扑结构的影响。仿真结果表明,与VG和水平穿越可视图(HVG)相比,虽然LPVG算法的时间复杂度较高,但是LPVG对信号中的噪声具有较强的鲁棒性:分别对周期、随机、分形和混沌四种时间序列进行LPVG建网,发现随着噪声强度增大,LPVG网络聚类系数的波动率均为最低,分别为6.73%、0.05%、0.99%和3.20%。接下来对脑电信号的PSD和LPVG建网分析结果表明,癫痫发作中,PSD值在delta频带下显著增强,而在theta频带下显著降低;LPVG网络拓扑结构有所改变,网络中各模块的独立性有所提高,网络的平均路径长度增大,复杂度降低。所提的功率谱密度和有限穿越可视图算法能够有效表征癫痫前、中、后三种状态下的脑电信号能量分布和单通道信号可视化后的网络拓扑结构的异常,为癫痫的病理研究和临床诊断提供帮助。 相似文献
4.
传统的疲劳驾驶检测系统,一般采用对面部特征进行识别与信息提取的方式,易受到外界因素干扰,检测效率较低。针对这一问题,提出基于深度信念网络(DBM)的脑电信号(EEG)疲劳检测系统。结合深度信念网络工作原理和系统整体框架,设计系统硬件结构和软件功能。采用SAA7115型号信号解码器对数字化信号进行分离,通过采集模块电路图,将解码器连接到低噪声Video接口处,保证分离后的脑电信号为合成信号;通过TMS320DM642的DSP数字信号处理器对端口1信号进行合成、对端口2信号进行复合信号编码,保证信号采集不受外界因素干扰;将受限玻尔兹曼机在硬件采集模块中提取的信号进行疲劳程度检测,根据脑电信号变化强度,区分疲劳和未疲劳状态下脑电信号特征,完成系统设计。实验结果表明,所设计系统具有较高检测效率,可为疲劳驾驶人员生命安全提供保障。 相似文献
5.
6.
7.
监测麻醉深度的脑电信号的近似熵特征研究 总被引:4,自引:0,他引:4
近似熵是一种用来量化时间序列复杂度的新方法。实验表明脑电信号的近似熵在监测麻醉深度过程中能很好地反映全麻时的深浅程度,且具有算法简单等特点,特别适用于分析脑电等生物信号。文章主要用近似熵监测了SD大鼠的麻醉过程,结论和事实非常吻合。 相似文献
8.
脑电信号EEG是一种微弱的低频生理信号,它由脑部神经活动产生的自发性电位活动,含有非常丰富的大脑活动信息,是进行临床脑疾病诊断的一种重要方法,因此获取脑电信号具有非常重要的现实意义。介绍了高速12位A/D转换器AD574A,及其低功耗,高精度等优点。根据其转换原理,论述其在脑电信号采集系统中的应用。系统采用FPGA芯片EP2C8Q208C8来控制AD574A的转换,给出了硬件连接电路和软件实现。在Quartus II 9.0中采用VHDL进行程序设计,针对系统的高速和可靠性要求,软件设计采用有限状态机FSM控制,并进行仿真验证,具有实际应用参考价值。 相似文献
9.
为准确选择脑电信号的频率与通道参数,提高样本的分类识别率,提出一种基于散度的脑电信号特征选择方法。利用散度分析算法从样本数据的原始特征中选取散度值较大的k个特征,并对其进行基于共空间模型的特征提取与线性判别分类器的分类识别。使用2005年BCI竞赛提供的IVa数据集5位样本数据进行实验,结果表明,采用散度分析算法得到的测试样本与训练样本平均识别率为95.54%和84.57%,均高于相关系数和互信息选择算法。 相似文献
10.
针对基于三维视觉指导的运动想象脑机接口多通道冗余信息较多、分类准确率差的问题,提出了一种基于小波包分解(WPD)—共空间滤波(CSP)—自适应差分进化(ADE)的模式脑电信号特征提取与选择分类方法。首先,对采集的多通道运动想象脑电信号进行WPD变化,划分出精细的子频带;然后,分别将WPD变换后的每个子空间作为CSP的输入,得到对应的特征向量;最后,使用ADE算法对特征向量进行选择,选择出用于分类的最佳特征子集。采用WPD-CSP-ADE模式进行特征提取与选择,较经典的WPD-CSP方法在分类正确率、特征个数方面有着更好的表现。同时,所提算法分类性能明显优于遗传算法、粒子群算法。实验结果表明,WPD-CSP-ADE方法能够有效地提高分类正确率,同时减少了用于分类的特征个数。 相似文献
11.
12.
基于能量特征的脑电信号特征提取与分类 总被引:1,自引:0,他引:1
为了快速、有效地提取脑电特征,提高分类正确率,采用带通滤波和小波包分析的方法提取Mu、Beta节律对应的脑电信号,在时域范围内,将信号幅度的平方作为能量特征值;在频域范围内,采用AR模型功率谱估计法所得的功率谱密度作为能量特征值.根据运动想象脑电信号特点,构造左右通道信号能量差值的符号特性作为分类判别依据,进行分类测试,方法简单.初步实验结果表明,所利用的两种方法的分类正确率达87.857%. 相似文献
13.
运动想象脑电信号采集成本高且个体差异大,跨个体域构建脑电信号模式识别模型属于典型的小样本跨域学习任务。针对该任务,提出了一种运动想象脑电信号的跨域特征学习方法。该方法首先选择最优度量方法对齐协方差并提取共同空间模式特征;其次,在该特征基础上采用领域自适应方法学习目标域的最优跨域特征。为验证所提方法的可行性与有效性,采用经典模型识别跨域特征,在两个公开的数据集上进行对比实验。实验结果表明,通过所提方法学习到的跨域特征,在运动想象模式识别中,明显优于现有方法学习到的特征。此外,还详细对比了跨域特征学习方法的各项参数设置、性能及效率。 相似文献
14.
《模式识别与人工智能》2014,(5)
为消除混杂在脑电信号(EEG)中的噪声,提出一种基于双密度小波邻域相关阈值处理的EEG消噪方法.利用双密度小波对EEG分解,得到多层的信号高频系数.根据小波系数的局部统计依赖性,运用邻域相关阈值处理算法进行收缩,将收缩后的小波系数进行重构得到消噪后的信号.对加噪标准信号和实测EEG的消噪实验结果表明,与一代离散小波和传统软阈值法相比,信噪比、均方根误差和最大误差3个消噪效果评价指标都有明显改善. 相似文献
15.
针对疲劳识别率有待提高和现行疲劳检测设备不便携带的问题,提出一种以便携式眼镜为载体结合处理头动与眼电信号的疲劳检测方法.利用便携式眼镜采集头动与眼电信号并通过蓝牙将数据传输到手机终端.采用融合卡尔曼滤波算法处理头动信号并提取点头频率特征,采用Perclos算法P80原理和分段平均功率比值法处理眼电信号得到眨眼频率和低高... 相似文献
16.
脑电信号分析与处理是脑-机接口技术的关键环节,视觉诱发电位是脑-机接口技术较为常用的一种方法。采用功率谱估计中的自相关法、Welch法和AR模型法对稳态视觉诱发脑电信号进行频率特征提取,根据Fisher线性分类对3种方法提取的特征量进行分类判别。结果表明,AR模型法提取频率特征量的准确率最高。 相似文献
17.
18.
对基于左右手想象的脑机接口数据进行了离线分析。在预处理过程中,采用4阶椭圆带通滤波器进行8~12Hz带通滤波,提取Mu节律对应的EEG信号。选取时间为4~5.5s内的C3、C4通道的幅值和之比作为时域分类特征;在频域范围内,对滤波后数据进行10阶的AR模型功率谱估计作为频域特征;将时域特征和频域特征结合成时频特征向量作为分类特征;在分类器的选择上,使用线性感知器作为分类准则对特征向量进行分类训练。结果表明,经过滤波后的分类结果比未经过滤波的效果要好。选用C3、C4通道的时频特征向量作为分类特征,表达意义简单、明了,且能将某些时频的优点结合,分类准确率较高,且分类速度快,能满足实时性要求。 相似文献
19.
针对目前基于单一脑区功能性网络层面的特征提取,文中提出稀疏组lasso-granger因果关系方法.首先从效应性脑网络层面提取不同脑区之间的因果关系作为脑电特征,分别提取受试者α,β,γ脑电波段的granger因果特征值.然后引用稀疏组lasso算法对获取的granger因果特征值进行特征筛选,获得高相关性特征子集作为情感分类特征.最后使用SVM分类器进行情感分类.此外,为了减少计算时间复杂度,使用过滤特征选择(ReliefF)算法,选取有效的脑电信号通道.实验表明,文中方法在Valence-Arousal二维情感模型上获得较高的平均情感分类准确率,分类效果优于对比的脑电特征,提取的情感脑电特征可以有效识别受试者的不同情感状态. 相似文献
20.
HHT方法在不同思维作业脑电信号分析中的应用 总被引:1,自引:0,他引:1
介绍了一种处理非线性、非平稳信号的新方法——HHT的原理及特点,并将其应用于不同思维作业脑电信号分析。实验结果表明,不同思维作业脑电信号经HHT后的HH谱和Hilbert边际谱都差异显著,证明HHT方法对脑电信号处理的可行性。 相似文献