首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The Rab27 family of small GTPases regulates exocytosis of distinct vesicle types including multivesicular endosomes, which results in the release of exosomes. Exosomes are nanometer-sized membrane vesicles that enclose soluble factors such as proteins and nucleic acids within a lipid bilayer and can travel toward distant tissues to influence multiple aspects of cell behavior. In our view that tumors are endocrine organs producing exosomes, Rab27 GTPases and their effector proteins are critical determinants for invasive growth and metastasis. Rab27 proteins and their effectors may serve as prognostic biomarkers or as targets for patient-tailored therapy.  相似文献   

2.
In the knee joint, articular cartilage injury can often lead to osteoarthritis of the knee (OAK). Currently, no point-of-care treatment can completely address OAK symptoms and regenerate articular cartilage to restore original functions. While various cell-based therapies are being developed to address OAK, exosomes containing various components derived from their cells of origin have attracted attention as a cell-free alternative. The potential for exosomes as a novel point-of-care treatment for OAK has been studied extensively, especially in the context of intra-articular treatments. Specific exosomal microRNAs have been identified as possibly effective in treating cartilage defects. Additionally, exosomes have been studied as biomarkers through their differences in body fluid composition between joint disease patients and healthy subjects. Exosomes themselves can be utilized as a drug delivery system through their manipulation and encapsulation of specific contents to be delivered to specific cells. Through the combination of exosomes with tissue engineering, novel sustained release drug delivery systems are being developed. On the other hand, many of the functions and activities of exosomes are unknown and challenges remain for clinical applications. In this review, the possibilities of intra-articular treatments utilizing exosomes and the challenges in using exosomes in therapy are discussed.  相似文献   

3.
Photodynamic therapy (PDT), a non-/minimally invasive cancer treatment method, has the advantages of low side effects, high selectivity, and low drug resistance. It is currently a popular cancer treatment method. However, given the shortcomings of photosensitizers such as poor photostability, poor water solubility, and short half-life in vivo when used alone, the development of photosensitizer nano-delivery platforms has always been a research hotspot to overcome these shortcomings. In the human body, various types of cells generally release bilayer extracellular vesicles known as exosomes. Compared with traditional materials, exosomes are currently an ideal drug delivery platform due to their homology, low immunogenicity, easy modification, high biocompatibility, and natural carrying capacity. Therefore, in this concept, we focus on the research status and prospects of engineered exosome-based photosensitizer nano-delivery platforms in cancer PDT.  相似文献   

4.
The heart is the core organ of the circulatory system. Through the blood circulation system, it has close contact with all tissues and cells in the body. An exosome is an extracellular vesicle enclosed by a phospholipid bilayer. A variety of heart tissue cells can secrete and release exosomes, which transfer RNAs, lipids, proteins, and other biomolecules to adjacent or remote cells, mediate intercellular communication, and regulate the physiological and pathological activities of target cells. Cardiogenic exosomes play an important role in regulating almost all pathological and physiological processes of the heart. In addition, they can also reach distant tissues and organs through the peripheral circulation, exerting profound influence on their functional status. In this paper, the composition and function of cardiogenic exosomes, the factors affecting cardiogenic exosomes and their roles in cardiovascular physiology and pathophysiology are discussed, and the close relationship between cardiovascular system and motor system is innovatively explored from the perspective of exosomes. This study provides a reference for the development and application of exosomes in regenerative medicine and sports health, and also provides a new idea for revealing the close relationship between the heart and other organ systems.  相似文献   

5.
Sphingolipids (SLs), glycosphingolipids (GSLs), and eicosanoids are bioactive lipids, which play important roles in the etiology of various diseases, including cancer. However, their content and roles in cancer cells, and in particular in the exosomes derived from tumor cells, remain insufficiently characterized. In this study, we evaluated alterations of SL and GSL levels in transformed cells and their exosomes, using comparative HPLC-MS/MS analysis of parental human bronchial epithelial cells HBEC-12KT and their derivative, benzo[a]pyrene-transformed HBEC-12KT-B1 cells with the acquired mesenchymal phenotype. We examined in parallel SL/GSL contents in the exosomes released from both cell lines. We found significant alterations of the SL/GSL profile in the transformed cell line, which corresponded well with alterations of the SL/GSL profile in exosomes derived from these cells. This suggested that a majority of SLs and GSLs were transported by exosomes in the same relative pattern as in the cells of origin. The only exceptions included decreased contents of sphingosin, sphingosin-1-phosphate, and lactosylceramide in exosomes derived from the transformed cells, as compared with the exosomes derived from the parental cell line. Importantly, we found increased levels of ceramide phosphate, globoside Gb3, and ganglioside GD3 in the exosomes derived from the transformed cells. These positive modulators of epithelial–mesenchymal transition and other pro-carcinogenic processes might thus also contribute to cancer progression in recipient cells. In addition, the transformed HBEC-12KT-B1 cells also produced increased amounts of eicosanoids, in particular prostaglandin E2. Taken together, the exosomes derived from the transformed cells with specifically upregulated SL and GSL species, and increased levels of eicosanoids, might contribute to changes within the cancer microenvironment and in recipient cells, which could in turn participate in cancer development. Future studies should address specific roles of individual SL and GSL species identified in the present study.  相似文献   

6.
Endosome-derived small extracellular vesicles (EVs), often referred to as exosomes, are produced by almost all, if not all, cell types, and are critical for intercellular communication. They are composed of a lipid bilayer associated with membrane proteins and contain a payload of lipids, proteins and regulatory RNAs that depends on the parental cell physiological condition. By transferring their “cargo”, exosomes can modulate the phenotype of neighboring and distant cells. Stem cells (SC) were widely studied for therapeutic applications regarding their regenerative/reparative potential as well as their immunomodulatory properties. Whether from autologous or allogeneic source, SC beneficial effects in terms of repair and regeneration are largely attributed to their paracrine signaling notably through secreted EVs. Subsequently, SC-derived EVs have been investigated for the treatment of various diseases, including inflammatory skin disorders, and are today fast-track cell-free tools for regenerative/reparative strategies. Yet, their clinical application is still facing considerable challenges, including production and isolation procedures, and optimal cell source. Within the emerging concept of “allogeneic-driven benefit” for SC-based therapies, the use of EVs from allogeneic sources becomes the pragmatic choice although a universal allogeneic cell source is still needed. As a unique temporary organ that ensures the mutual coexistence of two allogeneic organisms, mother and fetus, the human placenta offers a persuasive allogeneic stem cell source for development of therapeutic EVs. Advancing cell-free therapeutics nurtures great hope and provides new perspectives for the development of safe and effective treatment in regenerative/reparative medicine and beyond. We will outline the current state of the art in regard of EVs, summarize their therapeutic potential in the context of skin inflammatory disorders, and discuss their translational advantages and hurdles.  相似文献   

7.
In recent years, fluorescent metal nanoclusters have been used to develop bioimaging and sensing technology. Notably, protein-templated fluorescent gold nanoclusters (AuNCs) are attracting interest due to their excellent fluorescence properties and biocompatibility. Herein, we used an exosome template to synthesize AuNCs in an eco-friendly manner that required neither harsh conditions nor toxic chemicals. Specifically, we used a neutral (pH 7) and alkaline (pH 11.5) pH to synthesize two different exosome-based AuNCs (exo-AuNCs) with independent blue and red emission. Using field-emission scanning electron microscopy, energy dispersive X-ray microanalysis, nanoparticle tracking analysis, and X-ray photoelectron spectroscopy, we demonstrated that AuNCs were successfully formed in the exosomes. Red-emitting exo-AuNCs were found to have a larger Stokes shift and a stronger fluorescence intensity than the blue-emitting exo-AuNCs. Both exo-AuNCs were compatible with MCF-7 (human breast cancer), HeLa (human cervical cancer), and HT29 (human colon cancer) cells, although blue-emitting exo-AuNCs were cytotoxic at high concentrations (≥5 mg/mL). Red-emitting exo-AuNCs successfully stained the nucleus and were compatible with membrane-staining dyes. This is the first study to use exosomes to synthesize fluorescent nanomaterials for cellular imaging applications. As exosomes are naturally produced via secretion from almost all types of cell, the proposed method could serve as a strategy for low-cost production of versatile nanomaterials.  相似文献   

8.
Cell communication via exosomes is capable of influencing cell fate in stress situations such as exposure to ionizing radiation. In vitro and in vivo studies have shown that exosomes might play a role in out-of-target radiation effects by carrying molecular signaling mediators of radiation damage, as well as opposite protective functions resulting in resistance to radiotherapy. However, a global understanding of exosomes and their radiation-induced regulation, especially within the context of an intact mammalian organism, has been lacking. In this in vivo study, we demonstrate that, compared to sham-irradiated (SI) mice, a distinct pattern of proteins and miRNAs is found packaged into circulating plasma exosomes after whole-body and partial-body irradiation (WBI and PBI) with 2 Gy X-rays. A high number of deregulated proteins (59% of WBI and 67% of PBI) was found in the exosomes of irradiated mice. In total, 57 and 13 miRNAs were deregulated in WBI and PBI groups, respectively, suggesting that the miRNA cargo is influenced by the tissue volume exposed to radiation. In addition, five miRNAs (miR-99b-3p, miR-200a-3p, miR-200a, miR-182-5p, miR-182) were commonly overexpressed in the exosomes from the WBI and PBI groups. In this study, particular emphasis was also given to the determination of the in vivo effect of exosome transfer by intracranial injection in the highly radiosensitive neonatal cerebellum at postnatal day 3. In accordance with a major overall anti-apoptotic function of the commonly deregulated miRNAs, here, we report that exosomes from the plasma of irradiated mice, especially in the case of WBI, prevent radiation-induced apoptosis, thus holding promise for exosome-based future therapeutic applications against radiation injury.  相似文献   

9.
Atherosclerosis is an inflammatory disease in which lipids accumulate on the walls of blood vessels, thickening and clogging these vessels. It is well known that cell-to-cell communication is involved in the pathogenesis of atherosclerosis. Exosomes are extracellular vesicles that deliver various substances (e.g., RNA, DNA, and proteins) from the donor cell to the recipient cell and that play an important role in intercellular communication. Atherosclerosis can be either induced or inhibited through cell-to-cell communication using exosomes. An understanding of the function of exosomes as therapeutic tools and in the pathogenesis of atherosclerosis is necessary to develop new atherosclerosis therapies. In this review, we summarize the studies on the regulation of atherosclerosis through exosomes derived from multiple cells as well as research on exosome-based atherosclerosis treatment.  相似文献   

10.
Exosomes are nanoscale vesicles generated by cells for intercellular communication. Due to their composition, significant research has been conducted to transform these particles into specific delivery systems for various disease states. In this review, we discuss the common isolation and loading methods of exosomes, some of the major roles of exosomes in the tumor microenvironment, as well as discuss recent applications of exosomes as drug delivery vessels and the resulting clinical implications.  相似文献   

11.
Prostate cancer remains a life-threatening disease among men worldwide. The majority of PCa-related mortality results from metastatic disease that is characterized by metastasis of prostate tumor cells to various distant organs, such as lung, liver, and bone. Bone metastasis is most common in prostate cancer with osteoblastic and osteolytic lesions. The precise mechanisms underlying PCa metastasis are still being delineated. Intercellular communication is a key feature underlying prostate cancer progression and metastasis. There exists local signaling between prostate cancer cells and cells within the primary tumor microenvironment (TME), in addition to long range signaling wherein tumor cells communicate with sites of future metastases to promote the formation of pre-metastatic niches (PMN) to augment the growth of disseminated tumor cells upon metastasis. Over the last decade, exosomes/ extracellular vesicles have been demonstrated to be involved in such signaling. Exosomes are nanosized extracellular vesicles (EVs), between 30 and 150 nm in thickness, that originate and are released from cells after multivesicular bodies (MVB) fuse with the plasma membrane. These vesicles consist of lipid bilayer membrane enclosing a cargo of biomolecules, including proteins, lipids, RNA, and DNA. Exosomes mediate intercellular communication by transferring their cargo to recipient cells to modulate target cellular functions. In this review, we discuss the contribution of exosomes/extracellular vesicles in prostate cancer progression, in pre-metastatic niche establishment, and in organ-specific metastases. In addition, we briefly discuss the clinical significance of exosomes as biomarkers and therapeutic agents.  相似文献   

12.
A thrombus in a coronary artery causes ischemia, which eventually leads to myocardial infarction (MI) if not removed. However, removal generates reactive oxygen species (ROS), which causes ischemia–reperfusion (I/R) injury that damages the tissue and exacerbates the resulting MI. The mechanism of I/R injury is currently extensively understood. However, supplementation of exogenous antioxidants is ineffective against oxidative stress (OS). Enhancing the ability of endogenous antioxidants may be a more effective way to treat OS, and exosomes may play a role as targeted carriers. Exosomes are nanosized vesicles wrapped in biofilms which contain various complex RNAs and proteins. They are important intermediate carriers of intercellular communication and material exchange. In recent years, diagnosis and treatment with exosomes in cardiovascular diseases have gained considerable attention. Herein, we review the new findings of exosomes in the regulation of OS in coronary heart disease, discuss the possibility of exosomes as carriers for the targeted regulation of endogenous ROS generation, and compare the advantages of exosome therapy with those of stem-cell therapy. Finally, we explore several miRNAs found in exosomes against OS.  相似文献   

13.
Exosomes are very small extracellular vesicles secreted by multiple cell types and are extensively distributed in various biological fluids. Recent research indicated that exosomes can participate in regulating the tumor microenvironment and impacting tumor proliferation and progression. Due to the extensive enrollment in cancer development, exosomes have become a focus of the search for a new therapeutic method for cancer. Exosomes can be utilized for the therapeutic delivery of small molecules, proteins and RNAs to target cancer cells with a high efficiency. Exosome-carried proteins, lipids and nucleic acids are being tested as promising biomarkers for cancer diagnosis and prognosis, even as potential treatment targets for cancer. Moreover, different sources of exosomes exhibit multiple performances in cancer applications. In this review, we elaborate on the specific mechanism by which exosomes affect the communication between tumors and the microenvironment and state the therapeutic and diagnostic applications of exosomes in cancers.  相似文献   

14.
The release of exosomes can lead to cell–cell communication. Nutrients such as vitamin D3 and sphingolipids have important roles in many cellular functions, including proliferation, differentiation, senescence, and cancer. However, the specific composition of sphingolipids in exosomes and their changes induced by vitamin D3 treatment have not been elucidated. Here, we initially observed neutral sphingomyelinase and vitamin D receptors in exosomes released from HN9.10 embryonic hippocampal cells. Using ultrafast liquid chromatography tandem mass spectrometry, we showed that exosomes are rich in sphingomyelin species compared to whole cells. To interrogate the possible functions of vitamin D3, we established the optimal conditions of cell treatment and we analyzed exosome composition. Vitamin D3 was identified as responsible for the vitamin D receptor loss, for the increase in neutral sphingomyelinase content and sphingomyelin changes. As a consequence, the generation of ceramide upon vitamin D3 treatment was evident. Incubation of the cells with neutral sphingomyelinase, or the same concentration of ceramide produced in exosomes was necessary and sufficient to stimulate embryonic hippocampal cell differentiation, as vitamin D3. This is the first time that exosome ceramide is interrogated for mediate the effect of vitamin D3 in inducing cell differentiation.  相似文献   

15.
Tetraspanin CD9 is widely expressed on various cell types, such as cancer cells and mesenchymal stem cells (MSCs), and/or cell-released exosomes. It has been reported that exosomal CD9 plays an important role in intercellular communications involved in cancer cell migration and metastasis. However, reports on the effect of the CD9 of MSCs or MSC-derived exosomes on cancer cell migration are still lacking. In this study, using a transwell migration assay, we found that both dextran-coated iron oxide nanoparticles (dex-IO NPs) and ionomycin stimulated exosomal CD9 expression in human MSCs (hMSCs); however, hMSCs could not deliver them to melanoma cells to affect cell migration. Interestingly, a reduced migration of melanoma cell line was observed when the ionomycin-incubated hMSC-conditioned media but not dex-IO NP-labeled hMSC-conditioned media were in the bottom chamber. In addition, we found that dex-IO NPs decreased cellular CD9 expression in hMSCs but ionomycin increased this. Simultaneously, we found that ionomycin suppressed the expression and secretion of the chemokine CCL21 in hMSCs. The silencing of CD9 demonstrated an inhibitory role of cellular CD9 in CCL21 expression in hMSCs, suggesting that ionomycin could upregulate cellular CD9 to decrease CCL21 expression and secretion of hMSCs, which would reduce the migration of B16F10, A549 and U87MG cancer cell lines due to chemoattraction reduction of CCL21. The present study not only highlights the important role of bone marrow-derived hMSCs’ CD9-mediated CCL21 regulation in cancer bone metastasis but also suggests a new distinct pharmaceutical strategy for prevention or/and therapy of cancer metastasis.  相似文献   

16.
Liposomes form spontaneously by the assimilation of phospholipids, the primary component of cell membranes. Due to their unique ability to form selectively permeable bilayers in situ, they are widely used as nanocarriers for drug and small‐molecule delivery. However, there is a lack of straightforward methodologies to encapsulate living microorganisms. Here we demonstrate the successful encapsulation of whole cells in phospholipid vesicles by using the inverse‐emulsion technique of generating unilamellar vesicles. This method of liposome preparation allows for a facile encapsulation of large biomaterials that previously was not easily attainable. Using Escherichia coli as a model organism, we found that liposomes can protect the bacterium against external protease degradation and from harsh biological environments. Liposomes prepared by the inverse‐emulsion method were also capable of encapsulating yeast and were found to be naturally susceptible to hydrolysis by enzymes such as phospholipases, thus highlighting their potential role as cell delivery carriers.  相似文献   

17.
Alginate as a versatile naturally occurring biomaterial has found widespread use in the biomedical field due to its unique features such as biocompatibility and biodegradability. The ability of its semipermeable hydrogels to provide a favourable microenvironment for clinically relevant cells made alginate encapsulation a leading technology for immunoisolation, 3D culture, cryopreservation as well as cell and drug delivery. The aim of this work is the evaluation of structural properties and swelling behaviour of the core-shell capsules for the encapsulation of multipotent stromal cells (MSCs), their 3D culture and cryopreservation using slow freezing. The cells were encapsulated in core-shell capsules using coaxial electrospraying, cultured for 35 days and cryopreserved. Cell viability, metabolic activity and cell–cell interactions were analysed. Cryopreservation of MSCs-laden core-shell capsules was performed according to parameters pre-selected on cell-free capsules. The results suggest that core-shell capsules produced from the low viscosity high-G alginate are superior to high-M ones in terms of stability during in vitro culture, as well as to solid beads in terms of promoting formation of viable self-assembled cellular structures and maintenance of MSCs functionality on a long-term basis. The application of 0.3 M sucrose demonstrated a beneficial effect on the integrity of capsules and viability of formed 3D cell assemblies, as compared to 10% dimethyl sulfoxide (DMSO) alone. The proposed workflow from the preparation of core-shell capsules with self-assembled cellular structures to the cryopreservation appears to be a promising strategy for their off-the-shelf availability.  相似文献   

18.
目的分离结肠癌细胞株的exosomes,并分析其在致敏抗原呈递细胞及激活相关效应细胞过程中的作用。方法差速离心法分离体外培养的正常exosomes和经热休克处理的sw1116细胞(Heat shocked sw1116,HS-sw1116)分泌的exosomes(Heat shocked exosomes,HS-Exo),并在电子显微镜下观察exosomes和HS-Exo的形态结构;SDS-PAGE初步分析exosomes和HS-Exo的蛋白组分,CCK-8法检测其促外周血单个核细胞(Peripheral blood monouclear cells,PBMCs)增殖的能力。结果电子显微镜观察,exosomes和HS-Exo的形态学结构无明显差异,其平均直径约为150 nm;exosomes和HS-Exo的蛋白条带分布情况基本相同,在高相对分子质量区域蛋白分布较多;exosomes比sw1116细胞更易引起PBMCs的增殖反应,HS-sw1116细胞和HS-Exo促PBMCs增殖的作用比sw1116细胞和exosomes更明显(P<0.05)。结论结肠癌sw1116细胞株可分泌exosomes,其比肿瘤细胞更易引起PBMCs的增殖,热休克处理可进一步增强细胞和exosomes的促PBMCs增殖的能力,exosomes在结肠癌免疫治疗方面具有重要的应用价值。  相似文献   

19.
Platelet-Rich Plasma (PRP) is enriched in molecular messengers with restorative effects on altered tissue environments. Upon activation, platelets release a plethora of growth factors and cytokines, either in free form or encapsulated in exosomes, which have been proven to promote tissue repair and regeneration. Translational research on the potential of exosomes as a safe nanosystem for therapeutic cargo delivery requires standardizing exosome isolation methods along with their molecular and morphological characterization. With this aim, we isolated and characterized the exosomes released by human PRP platelets. Western blot analysis revealed that CaCl2-activated platelets (PLT-Exos-Ca2+) released more exosomes than non-activated ones (PLT-Exos). Moreover, PLT-Exos-Ca2+ exhibited a molecular signature that meets the most up-to-date biochemical criteria for platelet-derived exosomes and possessed morphological features typical of exosomes as assessed by transmission electron microscopy. Array analysis of 105 analytes including growth factors and cytokines showed that PLT-Exos-Ca2+ exhibited lower levels of most analytes compared to PLT-Exos, but relatively higher levels of those consistently validated as components of the protein cargo of platelet exosomes. In summary, the present study provides new insights into the molecular composition of human platelet-derived exosomes and validates a method for isolating highly pure platelet exosomes as a basis for future preclinical studies in regenerative medicine and drug delivery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号