共查询到20条相似文献,搜索用时 15 毫秒
1.
半监督降维(Semi\|Supervised Dimensionality Reduction,SSDR)框架下,基于成对约束提出一种半监督降维算法SCSSDR。利用成对样本进行构图,在保持局部结构的同时顾及数据的全局结构。通过最优化目标函数,使得同类样本更加紧凑\,异类样本更加离散。采用UCI数据集对算法进行定量分析,发现该方法优于PCA及传统流形学习算法,进一步的UCI数据集和高光谱数据集分类实验表明:该方法适合于进行分类目的特征提取。 相似文献
2.
3.
传统的图像数据(n1×n2)一般表示为欧式空间R(n1×n2)上的一个向量,这样像素之间的空间关系将会丢失.因此,文中提出一种张量型的半监督降维算法.首先把图像看成张量空间Rn1☉Rn2中的一个点.再利用图像之间的成对约束--正约束和负约束,对图像进行半监督降维.降维后的数据较好地保留图像的局部结构.在大量人脸数据集上的实验验证该算法的有效性. 相似文献
4.
局部保持投影算法为非监督维数约简算法,没有有效利用样本数据的类别信息,不能有效提取鉴别特征。针对此问题,提出一种半监督局部保持投影(SSLPP)算法。该算法以少量有标记数据和无标记数据作为训练样本集构造出本征图Gi,并有区别地对待标记样本与无标记样本,增大同类样本点之间的权重,更有利于鉴别特征提取。在AVIRIS KSC和Botswana高光谱遥感影像数据集上的实验结果表明,SSLPP算法能够较为有效地发现高维空间中数据的内蕴结构,使得总体分类精度得到较为明显的改善。 相似文献
5.
由于高维特征空间通常会导致不适定问题,针对高光谱影像的统计模式识别是非常艰巨的任务。随着波段数目的增加,高光谱影像分析则面临Hughes现象等障碍,因此促进了降维方法的发展,它能够有效处理有限训练样本下的高维数据集情形。降维算法的目标是在保持原始数据主要本征信息的同时获取高维数据样本的低维表示。为了能够有效解决高光谱影像分析中的"维数灾难"问题,从而改进后续计算复杂度,我们引入一种半监督局部保持的降维算法。 相似文献
6.
针对高光谱图像存在“维数灾难”的问题,提出一种全局判别与局部稀疏保持的高光谱图像半监督特征提取算法(GLSSFE)。该算法通过LDA算法的散度矩阵保存有类标样本的全局类内判别信息和全局类间判别信息,结合利用半监督PCA算法对有类标和无类标样本进行主成分分析,保存样本的全局结构;利用稀疏表示优化模型自适应揭示样本数据间的非线性结构,将局部类间判别权值和局部类内判别权值嵌入半监督LPP算法保留样本数据的局部结构,从而最大化同类样本的相似性和异类样本的差异性。通过1-NN和SVM两个分类器分别对Indian Pines和Pavia University两个公共高光谱图像数据集进行分类,验证所提特征提取方法的有效性。实验结果表明,该GLSSFE算法最高总体分类精度分别达到89.10%和92.09%,优于现有的特征提取算法,能有效地挖掘高光谱图像的全局特征和局部特征,极大地提升高光谱图像的地物分类效果。 相似文献
7.
8.
9.
由于传统蚁群算法搜索空间大,算法时间复杂度高等,导致基于传统蚁群算法的高光谱数据波段选择算法(ACA-BS)耗时长,算法效率低下,且易陷入局部最优。而多态蚁群算法能大大缩小算法的搜索空间,降低算法时间复杂度。因此,研究设计了基于多态蚁群算法的高光谱数据波段选择算法(PACA-BS)。从算法运行时间、波段子集的类别可分性及信息量、总体分类精度等方面对算法进行对比分析。用于实验的数据为Hyperion和AVIRIS高光谱影像。实验结果表明:PACA-BS的运行时间较ACA-BS大大减少;对Hyperion影像进行降维时,基于PACA-BS的运行时间约为ACA-BS的一半。两种算法获得的波段子集的类别可分性大小较为接近,但PACA-BS获得的波段子集的信息量和总体分类精度优于ACA-BS。研究表明PACA-BS是一种效率较高的高光谱波段选择算法。 相似文献
10.
在面向分类的高光谱遥感数据降维过程中,考虑到高光谱遥感数据内在的非线性结构和传统流形学习非监督的特点,提出一种新的监督等距映射方法(S-Isomap)。方法基于类间距离大于类内距离的思想,首先利用KMEANS算法对原始数据进行聚类得到样本的初始类别标签,采用新距离搜寻数据点的K近邻,进而实施等距映射降维。实验证明了该方法优于传统Isomap。 相似文献
11.
研究了一种仅利用少量标记点训练深度卷积神经网络并对高光谱影像进行分类的方法。以图像分割获得的同质区增加训练样本数目;借助这些增加的样本训练初始分类器并预测所有未知点的初始类别;将每一初始类别聚集为适当的类簇,以类簇号作为伪标签对深度卷积网进行预训练;最后利用经过同质区增加的训练样本精调预训练深度卷积网。实验结果证明新方法可以在仅用少量实际标记样本的情况下成功地训练深度卷积网,对高光谱数据进行有效分类。 相似文献
12.
针对高光谱图像(HSI)训练数据获取困难的问题,采用了一种新的HSI半监督分类框架,该框架利用有限的标记数据和丰富的未标记数据来训练深度神经网络。同时,由于高光谱样本分布是不平衡的,导致不同样本分类难度存在巨大差异,采用原始交叉熵损失函数无法刻画这种分布特征,因而分类效果不理想。为了解决这个问题,在半监督分类框架中提出一种基于焦点损失的多分类目标函数。最后,考虑到HSI的空间信息对分类的影响,结合马尔可夫随机场(MRF),利用样本空间特征进一步改善分类效果。在两个常用的HSI数据集上,将所提方法与多种典型算法进行了实验对比分析,实验结果表明所提方法能够产生优于其他对比方法的分类效果。 相似文献
13.
针对高光谱图像数据标注困难,以及传统图嵌入方法无法表征高维数据之间的多元复杂关系的问题,提出面向高光谱特征提取的无监督空谱近邻超图嵌入算法.充分利用高光谱的空间信息与光谱信息揭示像元之间的相关性,构造有效的无监督空谱近邻关系,引入超图学习表征高维数据之间的复杂多元关系,提高特征提取性能.将所提算法与同类算法在Indian Pines和Salinas数据集上进行实验,其结果表明,所提算法能够获得较高的分类精度. 相似文献
14.
15.
基于自动子空间划分的高光谱数据特征提取 总被引:7,自引:0,他引:7
针对遥感高光谱图像数据量大、维数高的特点,提出了一种自动子空间划分方法用于高光谱图像数据量减小处理。该方法主要包括3个处理步骤:数据空间划分,子空间主成分分析和基于类别可分性准则的特征选择。该方法充分利用了高光谱图像各波段数据之间的局部相关性,将整个数据划分为若干个具有较强相关性的独立子空间,然后在子空间内利用主成分分析进行特征提取,根据各类地物间的类别可分性选择有效特征,最后利用地物分类来验证该方法的有效性。实验结果表明,该方法能够有效地实现高光谱图像数据维数减小和特征提取,同现有的自适应子空间分解方法和分段主成分变换方法相比,该方法所提取的特征用于分类时能获得较好的分类精度。利用该方法进行处理,当高光谱数据维数降低了90%时,9类地物分类实验的总体分类精度可以达到80.2%。 相似文献
16.
17.
高光谱遥感影像以其众多的波段数目,为地表观测提供近乎连续的波谱数据;然而海量的高光谱遥感影像存在着大量的信息冗余,为数据的处理带来了挑战。因此在对高光谱遥感影像进行存储、分析及可视化等操作之前,对高光谱遥感影像降维处理成为预处理的关键环节之一。利用信息熵理论,将高光谱遥感影像的各波段抽象为具有相关性的独立个体,设计了高光谱遥感影像的决策表矩阵,进而计算各波段的信息熵,量化各波段的信息量,从而将各波段根据信息增益进行排序。用户可根据高光谱遥感影像应用的精度需求,按排序选择波段组合,从而达到降维目的。以遥感分类结果的精度评价为例,对高光谱遥感降维方法的可行性和优越性进行评价。实验结果表明,该方法相较其他特征选取降维方法,能获得更高的分类精度。 相似文献
18.
19.
20.
针对tri_training协同训练算法在小样本的高光谱遥感影像半监督分类过程中,存在增选样本的误标记问题,提出一种基于空间邻域信息的半监督协同训练分类算法tri_training_SNI(tri_training based on Spatial Neighborhood Information)。首先利用分类器度量方法不一致度量和新提出的不一致精度度量从MLR(Multinomial Logistic Regression)、KNN(k-Nearest Neighbor)、ELM(Extreme Learning Machine)和RF(Random Forest)4个分类器中选择3分类性能差异性最大的3个分类器;然后在样本选择过程中,采用选择出来的3个分类器,在两个分类器分类结果相同的基础上,加入初始训练样本的8邻域信息进行未标记样本的二次筛选和标签的确定,提高了半监督学习的样本选择精度。通过对AVIRIS和ROSIS两景高光谱遥感影像进行分类实验,结果表明与传统的tri_training协同算法相比,该算法在分类精度方面有明显提高。 相似文献