首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
岳根霞  刘金花  刘峰 《计算机仿真》2021,(1):451-454,459
从大数据的基本特点和医疗大数据研究现状出发,分析处理过程中存在的问题,提出在决策树算法下的医疗大数据填补及分类方法.分析医疗数据的关联规则,采用关联分析(Apriori)算法和频繁模式树(Frequent Pattern Growth,FP-Growth)算法挖掘数据.以挖掘数据为基础填补其中的缺失数据,按照医疗数据特...  相似文献   

2.
罗丹  马军生 《计算机仿真》2022,39(1):181-185
随着信息技术的快速发展,每天都有数以万计的图像产生,如何从中挖掘重要的图像信息是当前研究的热点问题之一,对此提出了一种关于视觉特征与CapsNet的图像大数据分类方法.为了解决大量图像数据的计算复杂度过高,以及灰度颜色直方图中没有对图像位置的问题,将图像灰度进行压缩,并采用共生矩阵和分形维数对视觉特征进行提取.采用胶囊网络中神经元的输出来表达图像中所包含的各种属性信息,为了更新胶囊网络的耦合系数,通过动态路由算法表示胶囊与子胶囊间的关系,在训练和测试中对动态路由不断进行计算得出胶囊网络的输出.把图像大数据分类算法部署到云计算节点上,采用批量更新的数据模型,将图像的训练集划分为众多数据块进行Map并行训练,利用训练样本向前、后传播得出权值梯度,并采用Reduce计算出所有训练样本权值梯度的平均值,同时对样本权值进行更新.实验结果表明,提出的方法可以有效地防止图像过拟合现象发生,图像分类的准确率和效率均有明显地提高,在图像大数据分类方面表现出显著的性能优势.  相似文献   

3.
4.
近年来,卷积神经网络在图像处理方面的良好性能得到了广泛关注。为了更好地提取图像内容信息,提高图像分类精度,提出了一种基于深度多特征融合的CNNs图像分类算法。算法有效深度融合了图像的多种特征,即使用k-means++聚类算法提取的主颜色特征和利用去噪卷积神经网络提取的空间位置特征。实验结果表明,提出的基于深度多特征融合的CNNs图像分类算法在图像分类方面提供了有竞争力的结果,分类精度比CNN提升了7个百分点。该算法通过深度融合图像的多种特征,可为后续图像处理提供更全面更显著的有用信息。  相似文献   

5.
基于卷积神经网络的垃圾图像分类算法   总被引:1,自引:0,他引:1  
垃圾分类作为资源回收利用的重要环节之一,可以有效地提高资源回收利用效率,进一步减轻环境污染带来的危害.随着现代工业逐步智能化,传统的图像分类算法已经不能满足垃圾分拣设备的要求.本文提出一种基于卷积神经网络的垃圾图像分类模型(Garbage Classification Network, GCNet).通过构建注意力机制,模型完成局部和全局的特征提取,能够获取到更加完善、有效的特征信息;同时,通过特征融合机制,将不同层级、尺寸的特征进行融合,更加有效地利用特征,避免梯度消失现象.实验结果证明, GCNet在相关垃圾分类数据集上取得了优异的结果,能够有效地提高垃圾识别精度.  相似文献   

6.
基于显著图的花卉图像分类算法研究   总被引:2,自引:0,他引:2  
在计算机视觉领域,图像分类已成为最近几年的研究热点,取得了很大的发展.然而目前的研究大多基于开放领域,分类粒度较粗,不能很好地满足花卉图像精细分类的需求.传统的图像分类算法都是基于分割后的图像进行的,较为依赖分割效果的好坏,不太适用于花卉这一类拥有复杂背景的图像.因此结合花卉图像的自身特点,提出了一种新的基于显著图的图像分类算法,将显著图融入到图像特征的提取过程中,从而避免对图像进行分割,增强了算法的适应性和可靠性,随后又对基于SVM的多特征融合方法进行了简单的介绍.通过在花卉图像库进行的实验,证明了算法的有效性.  相似文献   

7.
高光谱图像分类是高光谱遥感的一项重要内容。然而,由于高光谱数据光谱波段信息丰富,且仅对材质信息敏感等特性,导致高光谱分类中易出现“维度灾难”、对高度信息不敏感等问题,这使得高光谱图像分类面临巨大的挑战。为解决上述问题,论文设计了一种双路DenseNet网络(Double-Branch DenseNet,DBD)。该网络其中一路对高光谱数据进行特征处理,压缩光谱维度,降低“维度灾难”的影响,并同步提取高光谱数据的光谱特征和空间特征;另一路通过密集连接提取雷达数据的高程特征。两路特征进行特征级融合,得到具有高程信息的高光谱特征,从而进行分类。通过实验证明,将富含高程信息的雷达数据与富含光谱信息的高光谱数据融合后进行分类的分类结果要优于单纯使用高光谱数据进行分类。  相似文献   

8.
卢玲  刘一波 《计算机仿真》2013,30(5):36-39,76
研究合成孔径雷达图像准确性问题。合成孔径雷达图像分类过程中,特征集包括图像的Pauli特征、相干矩阵特征、小波特征、纹理特征等多特征,由于原始特征数目过多,并且采集特征伴随巨大的随机性,几乎不能建立多目标描述模式。传统的图像分类方法面临多特征、强随机性的特征集合时,因为无固定化的特征约束,导致分类效果不好的问题。为了避免上述缺陷,提出了一种基于最优分类平面的合成孔径雷达图像分类算法。利用局部二值模式纹理分析方法,进行合成孔径雷达图像特征提取,为图像分类提供准确的数据基础。利用最优分类平面方法,实现合成孔径雷达图像的分类。实验结果表明,利用上述算法进行高精度合成孔径雷达图像分类,能够获取准确的分类结果。  相似文献   

9.
遥感图像分类是遥感图像分析和理解的基础,是遥感图像研究中的重要内容之一。为提高分类效果,遥感图像分类中通常需要综合运用多种特征。提出一个新的基于特征级融合的遥感图像分类方法。将多种图像空间特征和光谱特征分别作为分类器的输入,将各分类器的概率输出拼接起来作为中间层特征再进行分类。该方法有效避免了多特征直接拼接存在的尺度问题。在Indian93和Flightline C1两个数据集上的实验结果表明该方法具有一定优势。  相似文献   

10.
基于局部特征的图像快速分类算法   总被引:3,自引:2,他引:1       下载免费PDF全文
基于内容的图像快速分类是Web图像实时搜索和过滤的基础。通过分析图像特征分布特点,提出一个基于局部特征的图像快速分类算法。与目前算法相比,该算法仅需对图像的局部区域扫描分析,即可得到其颜色、纹理、形状等特征,并利用Bayesian分类器来实现图像的快速自动分类。相关对比实验证实,该算法能够快速、准确地实现图像分类。  相似文献   

11.
陈鑫华  钱雪忠  宋威 《计算机工程》2021,47(11):268-275
传统卷积神经网络存在卷积核单一、网络结构复杂和参数冗余的问题。提出一种轻量级特征融合卷积神经网络MS-FNet。在融合模块中采用多路结构以增加卷积神经网络的宽度,通过不同尺寸的卷积核对输入特征图进行处理,提高网络在同一层中提取不同特征的能力,并在每次卷积后采用批归一化、ReLU等方法去除冗余特征。此外,使用卷积层代替传统的全连接层,从而加快模型的训练速度,缓解因参数过多造成的过拟合现象。实验结果表明,MS-FNet可在降低错误率的同时,有效减少网络参数量。  相似文献   

12.
目前,卷积神经网络已成为视觉对象识别的主流机器学习方法。有研究表明,网络层数越深,所提取的深度特征表征能力越强。然而,当数据集规模不足时,过深的网络往往容易过拟合,深度特征的分类性能将受到制约。因此,提出了一种新的卷积神经网络分类算法:并行融合网FD-Net。以网络融合的方式提高特征的表达能力,并行融合网首先组织2个相同的子网并行提取图像特征,然后使用精心设计的特征融合器将子网特征进行多尺度融合,提取出更丰富、更精确的融合特征用于分类。此外, 采用了随机失活和批量规范化等方法协助特征融合器去除冗余特征,并提出了相应的训练策略控制计算开销。最后,分别以经典的ResNet、InceptionV3、DenseNet和MobileNetV2作为基础模型,在UECFOOD-100和Caltech101等数据集上进行了深入的研究和评估。实验结果表明,并行融合网能在有限的训练样本上训练出识别能力更强的分类模型,有效提高图像的分类准确率。  相似文献   

13.
一种基于Bayesian的图像分类算法   总被引:1,自引:0,他引:1  
提出了一种基于Bayesian的图像分类算法,该算法首先从原始数字图像出发,通过分析图像的特征分布特点,对图像的局部区域扫描分析,然后抽取目标图像的特征元素,得到其颜色、纹理、形状等特征,最后利用Bayesian分类器来实现图像的快速自动分类.实验结果表明,该算法能够有效提取图像的局部特征,从而快速、准确地实现图像分类.  相似文献   

14.
现有图像降维方法中特征信息被过多压缩,从而影响图像分类效果。提出IC-ACO算法,利用蚁群算法来解决图像分类问题。算法充分提取并保留图像的各种形态特征。利用蚁群优化算法在特征集中自动挖掘有效特征和特征值,构建各类分类规则,从而实现图像的分类识别。在真实的车标图像数据集上的实验结果表明,IC-ACO算法比其他类似算法具有更高的分类识别率。  相似文献   

15.
传统的图像分类算法在数据集过小的情况下分类准确率不高,且传统的图像变形方法容易破坏数据主体语义信息。基于图像变形网络的小样本图像分类算法研究中,采用端对端的方式结合图像变形网络和小样本图像分类网络,通过加权融合训练图像和相似图像的方式实现了对原有数据集的有效扩充,利用数据增强提高了小样本图像分类的准确率。实验数据表明,提出的方法在mini-ImageNet数据集上对小样本图像分类网络的性能有较好的提升效果。  相似文献   

16.
局部图像描述符最新研究进展   总被引:2,自引:2,他引:2       下载免费PDF全文
目的 局部图像描述符广泛应用于许多图像理解和计算机视觉应用领域,如图像分类、目标识别、图像检索、机器人导航、纹理分类等。SIFT算法的提出标志着现代局部图像描述符研究的开始。主要对最近发展的现代局部图像描述符进行了综述。方法 首先,介绍了4大类局部图像描述符:局部特征空间分布描述符、局部特征空间关联描述符、基于机器学习的局部描述符、扩展局部描述符(局部颜色描述符、局部RGB-D描述符、局部空时描述符)。对局部图像描述符进行了分析和分类,并总结了局部图像描述符的不变性、计算复杂度、应用领域、评价方法和评价数据集。最后,展望了局部图像描述符的未来研究方向。结果 近年来局部图像描述符研究取得了很大进展,提出了很多优秀的描述符,在辨别性、鲁棒性和实时性方面有了很大提高,应用领域不断拓展。结论 局部图像描述符应用广泛,是计算机视觉领域的重要基础研究。而目前,局部图像描述符还存在许多问题,还需进一步的深入研究。  相似文献   

17.
传统的大数据分类系统无法对海量数据的独立标签进行相关处理,导致系统内大数据的分类处理结果精确度较低。针对这一问题,提出了基于ML-kNN算法的大数据分类系统设计。系统硬件部分采用C/S混合式架构,处理器的设计选用单片机模式;系统软件部分通过设计大数据准备模块将数据集群的节点信息分配传递到系统的处理器中,通过数据模拟层提取大数据的分类特征,依据大数据的非结构文本特点设计大数据分类模块,同时基于ML-kNN算法设计分类结果分析模块,计算出数据集的样本特征标签概率,从而完成大数据分类系统的设计。测试证明,随着数据量的不断增多,该系统分类处理数据的准确率与召回率较传统的数据分类系统具有显著优势,在大数据的分类处理方面具有更好的性能。  相似文献   

18.
为了实现输电线路的合理、高效规划,如何准确、快速地进行遥感图像的地表覆盖物分类是值得研究的问题.该文针对高分辨率遥感图像地表覆盖物分类问题,提出了一种基于超像素的方法,其相对于基于像元的方法,减少了椒盐噪声,效率更高,有利于后续的GIS应用.该方法分为图像分割、特征提取、图像分类三个步骤.首先,通过SLIC算法将遥感图...  相似文献   

19.
针对服装图像大多基于简单款式的粗粒度分类导致分类准确率较低的问题,以款式多样的时尚女装为例,提出一种款式特征描述符的服装图像细粒度分类方法.首先结合时尚女装训练集对输入的待分类时尚女装图像进行部件检测;然后分别提取部件检测后时尚女装图像以及训练图像的HOG, LBP,颜色直方图和边缘算子4种底层特征,得到特征提取后的图像;再将自定义的款式特征描述符与提取到的4种底层特征进行匹配,采用随机森林和多类SVM对时尚女装款式和属性进行监督学习;最后实现时尚女装图像的细粒度分类并输出结果.实验结果表明,该方法能准确地检测并分类出不同服装,提高了服装分类的精度和准确率,能较好地满足实际应用中的需求.  相似文献   

20.
王松  王卫红  秦绪佳 《计算机工程》2006,32(24):201-203
提出了利用融合不同的低层MPEG-7视觉描述符的方法来进行基于内容的图像分类的技术。目的在于通过融合几种描述符来改善机器学习分类器的性能,包括3种方法来改善分类器的性能:作用于支持矢量机(SVM)分类器的聚类融合,作用于K近邻分类器的反向传播(BP)融合和作用于FART模糊神经网络的BP融合。将这些分类方法应用到海滩风景/城市风景的分类的实验中,实验结果表明BP融合显示出更好的性能改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号