首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic variants in TREM2, a microglia-related gene, are well-known risk factors for Alzheimer’s disease (AD). Here, we report that TREM2 originates from circular RNAs (circRNAs), a novel class of non-coding RNAs characterized by a covalent and stable closed-loop structure. First, divergent primers were designed to amplify circRNAs by RT-PCR, which were further assessed by Sanger sequencing. Then, additional primer sets were used to confirm back-splicing junctions. In addition, HMC3 cells were used to assess the microglial expression of circTREM2s. Three candidate circTREM2s were identified in control and AD human entorhinal samples. One of the circRNAs, circTREM2_1, was consistently amplified by all divergent primer sets in control and AD entorhinal cortex samples as well as in HMC3 cells. In AD cases, a moderate negative correlation (r = −0.434) was found between the global average area of Aβ deposits in the entorhinal cortex and circTREM2_1 expression level. In addition, by bioinformatics tools, a total of 16 miRNAs were predicted to join with circTREM2s. Finally, TREM2 mRNA corresponding to four isoforms was profiled by RT-qPCR. TREM2 mRNA levels were found elevated in entorhinal samples of AD patients with low or intermediate ABC scores compared to controls. To sum up, a novel circRNA derived from the TREM2 gene, circTREM2_1, has been identified in the human entorhinal cortex and TREM2 mRNA expression has been detected to increase in AD compared to controls. Unraveling the molecular genetics of the TREM2 gene may help to better know the innate immune response in AD.  相似文献   

2.
Tau protein is largely responsible for tauopathies, including Alzheimer’s disease (AD), where it accumulates in the brain as insoluble aggregates. Tau mRNA is regulated by alternative splicing, and inclusion or exclusion of exon 10 gives rise to the 3R and 4R isoforms respectively, whose balance is physiologically regulated. In this sense, one of the several factors that regulate alternative splicing of tau is GSK3β, whose activity is inhibited by the cellular prion protein (PrPC), which has different physiological functions in neuroprotection and neuronal differentiation. Moreover, a relationship between PrPC and tau expression levels has been reported during AD evolution. For this reason, in this study we aimed to analyze the role of PrPC and the implication of GSK3β in the regulation of tau exon 10 alternative splicing. We used AD human samples and mouse models of PrPC ablation and tau overexpression. In addition, we used primary neuronal cultures to develop functional studies. Our results revealed a paralleled association between PrPC expression and tau 4R isoforms in all models analyzed. In this sense, reduction or ablation of PrPC levels induces an increase in tau 3R/4R balance. More relevantly, our data points to GSK3β activity downstream from PrPC in this phenomenon. Our results indicate that PrPC plays a role in tau exon 10 inclusion through the inhibitory capacity of GSK3β.  相似文献   

3.
The discovery of novel intronic variants in the ABCA4 locus has contributed significantly to solving the missing heritability in Stargardt disease (STGD1). The increasing number of variants affecting pre-mRNA splicing makes ABCA4 a suitable candidate for antisense oligonucleotide (AON)-based splicing modulation therapies. In this study, AON-based splicing modulation was assessed for 15 recently described intronic variants (three near-exon and 12 deep-intronic variants). In total, 26 AONs were designed and tested in vitro using a midigene-based splice system. Overall, partial or complete splicing correction was observed for two variants causing exon elongation and all variants causing pseudoexon inclusion. Together, our results confirm the high potential of AONs for the development of future RNA therapies to correct splicing defects causing STGD1.  相似文献   

4.
Type 2 diabetes is characterized by impairment in insulin secretion, with an established genetic contribution. We aimed to evaluate common and low-frequency (1–5%) variants in nine genes strongly associated with insulin secretion by targeted sequencing in subjects selected from the extremes of insulin release measured by the disposition index. Collapsing data by gene and/or function, the association between disposition index and nonsense variants were significant, also after adjustment for confounding factors (OR = 0.25, 95% CI = 0.11–0.59, p = 0.001). Evaluating variants individually, three novel variants in ARAP1, IGF2BP2 and GCK, out of eight reaching significance singularly, remained associated after adjustment. Constructing a genetic risk model combining the effects of the three variants, only carriers of the ARAP1 and IGF2BP2 variants were significantly associated with a reduced probability to be in the lower, worst, extreme of insulin secretion (OR = 0.223, 95% CI = 0.105–0.473, p < 0.001). Observing a high number of normal glucose tolerance between carriers, a regression posthoc analysis was performed. Carriers of genetic risk model variants had higher probability to be normoglycemic, also after adjustment (OR = 2.411, 95% CI = 1.136–5.116, p = 0.022). Thus, in our southern European cohort, nonsense variants in all nine candidate genes showed association with better insulin secretion adjusted for insulin resistance, and we established the role of ARAP1 and IGF2BP2 in modulating insulin secretion.  相似文献   

5.
Several studies have demonstrated the different characteristics of tau seeding and spreading following intracerebral inoculation in murine models of tau-enriched fractions of brain homogenates from AD and other tauopathies. The present study is centered on the importance of host tau in tau seeding and the molecular changes associated with the transformation of host tau into abnormal tau. The brains of three adult murine genotypes expressing different forms of tau—WT (murine 4Rtau), hTau (homozygous transgenic mice knock-out for murine tau protein and heterozygous expressing human forms of 3Rtau and 4Rtau proteins), and mtWT (homozygous transgenic mice knock-out for murine tau protein)—were analyzed following unilateral hippocampal inoculation of sarkosyl-insoluble tau fractions from the same AD and control cases. The present study reveals that (a) host tau is mandatory for tau seeding and spreading following tau inoculation from sarkosyl-insoluble fractions obtained from AD brains; (b) tau seeding does not occur following intracerebral inoculation of sarkosyl-insoluble fractions from controls; (c) tau seeding and spreading are characterized by variable genotype-dependent tau phosphorylation and tau nitration, MAP2 phosphorylation, and variable activation of kinases that co-localize with abnormal tau deposits; (d) transformation of host tau into abnormal tau is an active process associated with the activation of specific kinases; (e) tau seeding is accompanied by modifications in tau splicing, resulting in the expression of new 3Rtau and 4Rtau isoforms, thus indicating that inoculated tau seeds have the capacity to model exon 10 splicing of the host mapt or MAPT with a genotype-dependent pattern; (e) selective regional and cellular vulnerabilities, and different molecular compositions of the deposits, are dependent on the host tau of mice injected with identical AD tau inocula.  相似文献   

6.
Alzheimer’s disease (AD) is a complex multifactorial disorder, mainly characterized by the progressive loss of memory and cognitive, motor, and functional capacity. The absence of effective therapies available for AD alongside the consecutive failures in the central nervous system (CNS) drug development has been motivating the search for new disease-modifying therapeutic strategies for this disease. To address this issue, the multitarget directed ligands (MTDLs) are emerging as a therapeutic alternative to target the multiple AD-related factors. Following this concept, herein we describe the design, synthesis, and biological evaluation of a family of chromeno[3,4-b]xanthones as well as their (E)-2-[2-(propargyloxy)styryl]chromone precursors, as first-in-class acetylcholinesterase (AChE) and β-amyloid (Aβ) aggregation dual-inhibitors. Compounds 4b and 10 emerged as well-balanced dual-target inhibitors, with IC50 values of 3.9 and 2.9 μM for AChE and inhibitory percentages of 70 and 66% for Aβ aggregation, respectively. The molecular docking showed that most of the compounds bound to AChE through hydrogen bonds with residues of the catalytic triad and π-stacking interactions between the main scaffold and the aromatic residues present in the binding pocket. The interesting well-balanced activities of these compounds makes them interesting templates for the development of new multitarget compounds for AD.  相似文献   

7.
The 15q11.2 BP1-BP2 deletion (Burnside-Butler) syndrome is emerging as the most common cytogenetic finding in patients with neurodevelopmental or autism spectrum disorders (ASD) presenting for microarray genetic testing. Clinical findings in Burnside-Butler syndrome include developmental and motor delays, congenital abnormalities, learning and behavioral problems, and abnormal brain findings. To better define symptom presentation, we performed comprehensive cognitive and behavioral testing, collected medical and family histories, and conducted clinical genetic evaluations. The 15q11.2 BP1-BP2 region includes the TUBGCP5, CYFIP1, NIPA1, and NIPA2 genes. To determine if additional genomic variation outside of the 15q11.2 region influences expression of symptoms in Burnside-Butler syndrome, whole-exome sequencing was performed on the parents and affected children for the first time in five families with at least one parent and child with the 15q1l.2 BP1-BP2 deletion. In total, there were 453 genes with possibly damaging variants identified across all of the affected children. Of these, 99 genes had exclusively de novo variants and 107 had variants inherited exclusively from the parent without the deletion. There were three genes (APBB1, GOLGA2, and MEOX1) with de novo variants that encode proteins evidenced to interact with CYFIP1. In addition, one other gene of interest (FAT3) had variants inherited from the parent without the deletion and encoded a protein interacting with CYFIP1. The affected individuals commonly displayed a neurodevelopmental phenotype including ASD, speech delay, abnormal reflexes, and coordination issues along with craniofacial findings and orthopedic-related connective tissue problems. Of the 453 genes with variants, 35 were associated with ASD. On average, each affected child had variants in 6 distinct ASD-associated genes (x¯ = 6.33, sd = 3.01). In addition, 32 genes with variants were included on clinical testing panels from Clinical Laboratory Improvement Amendments (CLIA) approved and accredited commercial laboratories reflecting other observed phenotypes. Notably, the dataset analyzed in this study was small and reported results will require validation in larger samples as well as functional follow-up. Regardless, we anticipate that results from our study will inform future research into the genetic factors influencing diverse symptoms in patients with Burnside-Butler syndrome, an emerging disorder with a neurodevelopmental behavioral phenotype.  相似文献   

8.
The WWOX gene was initially discovered as a putative tumor suppressor. More recently, its association with multiple central nervous system (CNS) pathologies has been recognized. WWOX biallelic germline pathogenic variants have been implicated in spinocerebellar ataxia type 12 (SCAR12; MIM:614322) and in early infantile epileptic encephalopathy (EIEE28; MIM:616211). WWOX germline copy number variants have also been associated with autism spectrum disorder (ASD). All identified germline genomic variants lead to partial or complete loss of WWOX function. Importantly, large-scale genome-wide association studies have also identified WWOX as a risk gene for common neurodegenerative conditions such as Alzheimer’s disease (AD) and multiple sclerosis (MS). Thus, the spectrum of CNS disorders associated with WWOX is broad and heterogeneous, and there is little understanding of potential mechanisms at play. Exploration of gene expression databases indicates that WWOX expression is comparatively higher in the human cerebellar cortex than in other CNS structures. However, RNA in-situ hybridization data from the Allen Mouse Brain Atlas show that specific regions of the basolateral amygdala (BLA), the medial entorhinal cortex (EC), and deep layers of the isocortex can be singled out as brain regions with specific higher levels of Wwox expression. These observations are in close agreement with single-cell RNA-seq data which indicate that neurons from the medial entorhinal cortex, Layer 5 from the frontal cortex as well as GABAergic basket cells and granule cells from cerebellar cortex are the specific neuronal subtypes that display the highest Wwox expression levels. Importantly, the brain regions and cell types in which WWOX is most abundantly expressed, such as the EC and BLA, are intimately linked to pathologies and syndromic conditions in turn associated with this gene, such as epilepsy, intellectual disability, ASD, and AD. Higher Wwox expression in interneurons and granule cells from cerebellum points to a direct link to the described cerebellar ataxia in cases of WWOX loss of function. We now know that total or partial impairment of WWOX function results in a wide and heterogeneous variety of neurodegenerative conditions for which the specific molecular mechanisms remain to be deciphered. Nevertheless, these observations indicate an important functional role for WWOX in normal development and function of the CNS. Evidence also indicates that disruption of WWOX expression at the gene or protein level in CNS has significant deleterious consequences.  相似文献   

9.
Amyloid-β (Aβ) peptides play a key role in Alzheimer’s disease (AD), the most common type of dementia. In this study, a polysaccharide from Bletilla striata (BSP), with strong antioxidant and anti-inflammatory properties, was extracted using a low-temperature method and tested for its efficacy against AD, in vitro using N2a and BV-2 cells, and in vivo using an AD rat model. The characterization of the extracted BSP for its molecular structure and functional groups demonstrated the effectiveness of the modified method for retaining its bioactivity. In vitro, BSP reduced by 20% reactive oxygen species (ROS) levels in N2a cells (p = 0.0082) and the expression levels of inflammation-related genes by 3-fold TNF-α (p = 0.0048), 4-fold IL-6 (p = 0.0019), and 2.5-fold IL-10 (p = 0.0212) in BV-2 cells treated with Aβ fibrils. In vivo, BSP recovered learning memory, ameliorated morphological damage in the hippocampus and cortex, and reduced the expression of the β-secretase protein in AlCl3-induced AD rats. Collectively, these findings demonstrated the efficacy of BSP for preventing and alleviating the effects of AD.  相似文献   

10.
The single-mutation of genes associated with Alzheimer’s disease (AD) increases the production of Aβ peptides. An elevated concentration of Aβ peptides is prone to aggregation into oligomers and further deposition as plaque. Aβ plaques and neurofibrillary tangles are two hallmarks of AD. In this review, we provide a broad overview of the diverses sources that could lead to AD, which include genetic origins, Aβ peptides and tau protein. We shall discuss on tau protein and tau accumulation, which result in neurofibrillary tangles. We detail the mechanisms of Aβ aggregation, fibril formation and its polymorphism. We then show the possible links between Aβ and tau pathology. Furthermore, we summarize the structural data of Aβ and its precursor protein obtained via Nuclear Magnetic Resonance (NMR) or X-ray crystallography. At the end, we go through the C-terminal and N-terminal truncated Aβ variants. We wish to draw reader’s attention to two predominant and toxic Aβ species, namely Aβ4−42/ and pyroglutamate amyloid-beta peptides, which have been neglected for more than a decade and may be crucial in Aβ pathogenesis due to their dominant presence in the AD brain.  相似文献   

11.
Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R) in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.  相似文献   

12.
13.
14.
Spinal muscular atrophy (SMA) is caused by homozygous survival of motor neurons 1 (SMN1) gene deletion, leaving a duplicate gene, SMN2, as the sole source of SMN protein. However, a defect in SMN2 splicing, involving exon 7 skipping, results in a low level of functional SMN protein. Therefore, the upregulation of SMN protein expression from the SMN2 gene is generally considered to be one of the best therapeutic strategies to treat SMA. Most of the SMA drug discovery is based on synthetic compounds, and very few natural compounds have been explored thus far. Here, we performed an unbiased mechanism-independent and image-based screen of a library of microbial metabolites in SMA fibroblasts using an SMN-specific immunoassay. In doing so, we identified brefeldin A (BFA), a well-known inhibitor of ER-Golgi protein trafficking, as a strong inducer of SMN protein. The profound increase in SMN protein was attributed to, in part, the rescue of the SMN2 pre-mRNA splicing defect. Intriguingly, BFA increased the intracellular calcium concentration, and the BFA-induced exon 7 inclusion of SMN2 splicing, was abrogated by the depletion of intracellular calcium and by the pharmacological inhibition of calcium/calmodulin-dependent kinases (CaMKs). Moreover, BFA considerably reduced the expression of Tra2-β and SRSF9 proteins in SMA fibroblasts and enhanced the binding of PSF and hnRNP M to an exonic splicing enhancer (ESE) of exon 7. Together, our results demonstrate a significant role for calcium and its signaling on the regulation of SMN splicing, probably through modulating the expression/activity of splicing factors.  相似文献   

15.
Primary microglial leukodystrophy or leukoencephalopathy are disorders in which a genetic defect linked to microglia causes cerebral white matter damage. Pigmented orthochromatic leukodystrophy, adult-onset orthochromatic leukodystrophy associated with pigmented macrophages, hereditary diffuse leukoencephalopathy with (axonal) spheroids, and adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) are different terms apparently used to designate the same disease. However, ALSP linked to dominantly inherited mutations in CSF1R (colony stimulating factor receptor 1) cause CSF-1R-related leukoencephalopathy (CRP). Yet, recessive ALSP with ovarian failure linked to AARS2 (alanyl-transfer (t)RNA synthase 2) mutations (LKENP) is a mitochondrial disease and not a primary microglial leukoencephalopathy. Polycystic membranous lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL; Nasu–Hakola disease: NHD) is a systemic disease affecting bones, cerebral white matter, selected grey nuclei, and adipose tissue The disease is caused by mutations of one of the two genes TYROBP or TREM2, identified as PLOSL1 and PLOSL2, respectively. TYROBP associates with receptors expressed in NK cells, B and T lymphocytes, dendritic cells, monocytes, macrophages, and microglia. TREM2 encodes the protein TREM2 (triggering receptor expressed on myeloid cells 2), which forms a receptor signalling complex with TYROBP in macrophages and dendritic cells. Rather than pure microglial leukoencephalopathy, NHD can be considered a multisystemic “immunological” disease.  相似文献   

16.
The mu opioid receptor has a distinct place in the opioid receptor family, since it mediates the actions of most opioids used clinically (e.g., morphine and fentanyl), as well as drugs of abuse (e.g., heroin). The single-copy mu opioid receptor gene, OPRM1, goes through extensive alternative pre-mRNA splicing to generate numerous splice variants that are conserved from rodents to humans. These OPRM1 splice variants can be classified into three structurally distinct types: (1) full-length 7 transmembrane (TM) carboxyl (C)-terminal variants; (2) truncated 6TM variants; and (3) single TM variants. Distinct pharmacological functions of these splice variants have been demonstrated by both in vitro and in vivo studies, particularly by using several unique gene-targeted mouse models. These studies provide new insights into our understanding of the complex actions of mu opioids with regard to OPRM1 alternative splicing. This review provides an overview of the studies that used these gene-targeted mouse models for exploring the functional importance of Oprm1 splice variants.  相似文献   

17.
18.
Steven–Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) are severe adverse drug reactions, characterized by extensive epidermal detachment and erosions of mucous membrane. SJS/TEN is one of the most serious adverse reactions to Nevirapine (NVP) treatment, commonly used in developing countries as first-line treatment of human immunodeficiency virus infection. In the last years TRAF3IP2 gene variants had been described as associated with susceptibility to several diseases such as psoriasis and psoriatic arthritis. We hypothesized that this gene, involved in immune response and in NF-κB activation, could also be implicated in the SJS/TEN susceptibility. We performed a full resequencing of TRAF3IP2 gene in a population of patients treated with NVP. Twenty-seven patients with NVP-induced SJS/TEN and 78 controls, all from Mozambique, were enrolled. We identified eight exonic and three intronic already described variants. The case/control association analysis highlighted an association between the rs76228616 SNP in exon 2 and the SJS/TEN susceptibility. In particular, the variant allele (C) resulted significantly associated with a higher risk to develop SJS/TEN (p = 0.012 and OR = 3.65 (95% CI 1.33–10.01)). A multivariate analysis by logistic regression confirmed its significant contribution (p = 0.027, OR = 4.39 (95% CI 1.19–16.23)). In conclusion, our study suggests that a variant in TRAF3IP2 gene could be involved in susceptibility to SJS/TEN.  相似文献   

19.
20.
The HOMER1 gene is involved in synaptic plasticity, learning and memory. Recent studies show that circular RNA derived from HOMER1 (circHOMER1) expression is altered in some Alzheimer’s disease (AD) brain regions. In addition, HOMER1 messenger (mRNA) levels have been associated with β-Amyloid (Aβ) deposits in brain cortical regions. Our aim was to measure the expression levels of HOMER1 circRNAs and their linear forms in the human AD entorhinal cortex. First, we showed downregulation of HOMER1B/C and HOMER1A mRNA and hsa_circ_0006916 and hsa_circ_0073127 levels in AD female cases compared to controls by RT-qPCR. A positive correlation was observed between HOMER1B/C, HOMER1A mRNA, and hsa_circ_0073128 with HOMER1B/C protein only in females. Global average area of Aβ deposits in entorhinal cortex samples was negatively correlated with HOMER1B/C, HOMER1A mRNA, and hsa_circ_0073127 in both genders. Furthermore, no differences in DNA methylation were found in two regions of HOMER1 promoter between AD cases and controls. To sum up, we demonstrate that linear and circular RNA variants of HOMER1 are downregulated in the entorhinal cortex of female patients with AD. These results add to the notion that HOMER1 and its circular forms could be playing a female-specific role in the pathogenesis of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号