首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A site-directed photocrosslink approach was used to elucidate components that interact directly with ADP- ribosylation factor (ARF)-GTP during coat assembly. Two ARF mutants were generated that contain a photolabile amino acid at positions distant to each other within the ARF molecule. Here we show that one of the two positions specifically interacts with coatomer subunit beta both on Golgi membranes and in isolated coat protein complex type I (COPI)-coated vesicles. Thus, a direct and GTP-dependent interaction of coatomer via beta-coat protein complex (COP) with ARF is involved in the coating of COPI-coated vesicles. These data implicate a bivalent interaction of the complex with the donor membrane during vesicle formation.  相似文献   

2.
Phospholipase C activity, GTPase activity and cytosolic-free calcium concentration in mast cells were stimulated by compound 48/80. Accumulation of inositol phosphates in rat mast cells was stimulated by guanosine 5'-[gamma-thio]-triphosphate. Guanosine 5'-[gamma-thio]triphosphate, however, exhibited no effect upon the purified phospholipase C activity and upon phospholipase C in the mast cell homogenate. The stimulatory effect of compound 48/80 upon phospholipase C activity of intact mast cells was observed to have been well correlated with that on GTPase activity of mast cell homogenate. Compound 48/80 exhibited no effect upon the binding of radioactive guanosine 5'-[gamma-thio]triphosphate to mast cell homogenate. Phospholipase C activity was verified by the above results to become affected by compound 48/80 through guanine nucleotide-binding regulatory protein.  相似文献   

3.
Newly synthesized proteins destined for delivery to the cell surface are inserted cotranslationally into the endoplasmic reticulum (ER) and, after their correct folding, are transported out of the ER. During their transport to the cell surface, cargo proteins pass through the various cisternae of the Golgi apparatus and, in the trans-most cisternae of the stack, are sorted into constitutive secretory vesicles that fuse with the plasma membrane. Simultaneously with anterograde protein transport, retrograde protein transport occurs within the Golgi complex as well as from the Golgi back to the ER. Vesicular transport within the early secretory pathway is mediated by two types of non-clathrin coated vesicles: COPI- and COPII-coated vesicles. The formation of these carrier vesicles depends on the recruitment of cytosolic coat proteins that are thought to act as a mechanical device to shape a flattened donor membrane into a spherical vesicle. A general molecular machinery that mediates targeting and fusion of carrier vesicles has been identified as well. Beside a general overview of the various coat structures known today, we will discuss issues specifically related to the biogenesis of COPI-coated vesicles: (1) a possible role of phospholipase D in the formation of COPI-coated vesicles; (2) a functional role of a novel family of transmembrane proteins, the p24 family, in the initiation of COPI assembly; and (3) the direction COPI-coated vesicles may take within the early secretory pathway. Moreover, we will consider two alternative mechanisms of protein transport through the Golgi stack: vesicular transport versus cisternal maturation.  相似文献   

4.
Intracellular membrane transport is mediated predominantly by vesicles which bud from one compartment and fuse specifically with the next compartment in the pathway, resulting in delivery of cargo. COPI-coated vesicles were first identified as intermediates in intra-Golgi transport and subsequent work has shown that they are also involved in transport between the endoplasmic reticulum and the Golgi complex. The COPI coat components have been characterised in detail at the molecular level and a role for membrane proteins and lipids in membrane recruitment of COPI has been uncovered. However, precisely how these distinct membrane components regulate coat recruitment is still unclear and is currently a matter for debate. Furthermore, it is still not clear at exactly how many transport steps COPI is involved and whether it mediates secretory transport in the anterograde or retrograde direction or both. This review focuses on our understanding of COPI structure and function and describes recent findings on the sites of action of COPI in animal cells.  相似文献   

5.
Activation of phospholipase D1 (PLD1) by Arf has been implicated in vesicle transport and membrane trafficking. PLD1 has also been shown to be associated with the small GTPase RalA, which functions downstream from Ras in a Ras-RalA GTPase cascade that facilitates intracellular signal transduction. Although PLD1 associates directly with RalA, RalA has no effect upon the activity of PLD1. However, PLD1 precipitated from cell lysates with immobilized glutathione S-transferase-RalA fusion protein is active. This suggests the presence of an additional activating factor in the active RalA-PLD1 complexes. Because Arf stimulates PLD1, we looked for the presence of Arf in the active RalA-PLD1 complexes isolated from v-Src- and v-Ras-transformed cell lysates. Low levels of Arf protein were detected in RalA-PLD1 complexes; however, if guanosine 5'-[gamma-thio]triphosphate was added to activate Arf and stimulate translocation to the membrane, high levels of Arf were precipitated by RalA from cell lysates. Interestingly, deletion of 11 amino-terminal amino acids unique to Ral GTPases, which abolished the ability of RalA to precipitate PLD activity, prevented the association between RalA and Arf. Brefeldin A, which inhibits Arf GDP-GTP exchange, inhibited PLD activity in v-Src- and v-Ras-transformed cells but not in the nontransformed cells, suggesting that the association of Arf with RalA is required for the increased PLD activity induced by v-Src and v-Ras. These data implicate Arf in the transduction of intracellular signals activated by v-Src and mediated by the Ras-RalA GTPase cascade. Because both Arf and PLD1 stimulate vesicle formation in the Golgi, these data raise the possibility that vesicle formation and trafficking may play a role in the transduction of intracellular signals.  相似文献   

6.
The Rab2 protein is a resident of pre-Golgi intermediates and required for vesicular transport in the early secretory pathway. We have previously shown that a peptide corresponding to the amino terminus of Rab2 (residues 2-14) arrests protein traffic prior to a rate-limiting event in VSV-G movement through pre-Golgi structures (Tisdale, E. J., and Balch, W. E. (1996) J. Biol. Chem. 271, 29372-29379). To determine the mechanism by which this peptide inhibits transport, we investigated the effect of the Rab2 peptide on the distribution of the beta-COP subunit of coatomer because COPI partially localizes to pre-Golgi intermediates. We found that the peptide caused a dramatic change in the distribution of pre-Golgi intermediates containing beta-COP. A quantitative binding assay was employed to measure recruitment of beta-COP to membrane when incubated with the Rab2 (13-mer). Peptide-treated microsomes showed a 25-70% increase in the level of membrane-associated beta-COP. The enhanced recruitment of coatomer to membrane was specific to the Rab2 (13-mer) and required guanosine 5'-3-O-(thio)triphosphate, ADP ribosylation factor, and protein kinase C-like activity. The ability to enhance beta-COP membrane binding was not limited to the peptide. Similarly, the addition of recombinant Rab2 protein to the assay promoted beta-COP membrane association. Our results suggest that the Rab2 peptide causes the persistent recruitment of COPI to pre-Golgi intermediates which ultimately arrests protein transport due to the inability of membranes to uncoat.  相似文献   

7.
Retrograde transport from the Golgi to the ER is an essential process. Resident ER proteins that escape the ER and proteins that cycle between the Golgi and the ER must be retrieved. The interdependence of anterograde and retrograde vesicle trafficking makes the dissection of both processes difficult in vivo. We have developed an in vitro system that measures the retrieval of a soluble reporter protein, the precursor of the yeast pheromone alpha-factor fused to a retrieval signal (HDEL) at its COOH terminus (Dean, N., and H.R.B Pelham. 1990. J. Cell Biol. 111:369-377). Retrieval depends on the HDEL sequence; the alpha-factor precursor, naturally lacking this sequence, is not retrieved. A full cycle of anterograde and retrograde transport requires a simple set of purified cytosolic proteins, including Sec18p, the Lma1p complex, Uso1p, coatomer, and Arf1p. Among the membrane-bound v-SNAP receptor (v-SNARE) proteins, Bos1p is required only for forward transport, Sec22p only for retrograde trafficking, and Bet1p is implicated in both avenues of transport. Putative retrograde carriers (COPI vesicles) generated from Golgi-enriched membranes contain v-SNAREs as well as Emp47p as cargo.  相似文献   

8.
Bidirectional transport by distinct populations of COPI-coated vesicles   总被引:1,自引:0,他引:1  
Electron microscope immunocytochemistry reveals that both anterograde-directed (proinsulin and VSV G protein) and retrograde-directed (the KDEL receptor) cargo are present in COPI-coated vesicles budding from every level of the Golgi stack in whole cells; however, they comprise two distinct populations that together can account for at least 80% of the vesicles budding from Golgi cisternae. Segregation of anterograde- from retrograde-directed cargo into distinct sets of COPI-coated vesicles is faithfully reproduced in the cell-free Golgi transport system, in which VSV G protein and KDEL receptor are packaged into separable vesicles, even when budding is driven by highly purified coatomer and a recombinant ARF protein.  相似文献   

9.
We have previously shown that p115, a vesicle docking protein, binds to two proteins (p130 and p400) in detergent extracts of Golgi membranes. p130 was identified as GM130, a Golgi matrix protein, and was shown to act as a membrane receptor for p115. p400 has now been identified as giantin, a Golgi membrane protein with most of its mass projecting into the cytoplasm. Giantin is found on COPI vesicles and pretreatment with antibodies inhibits both the binding of p115 and the docking of these vesicles with Golgi membranes. In contrast, GM130 is depleted from COPI vesicles and inhibition of the GM130 on Golgi membranes, using either antibodies or an NH2-terminal GM130 peptide, inhibits p115 binding and vesicle docking. Together these results suggest that COPI vesicles are docked by giantin on the COPI vesicles and GM130 on Golgi membranes with p115 providing a bridge.  相似文献   

10.
We have compared the sedimentation rates on sucrose gradients of the heterotrimeric GTP-binding regulatory (G) proteins Gs, G(o), Gi, and Gq extracted from rat brain synaptoneurosomes with Lubrol and digitonin. The individual alpha and beta subunits were monitored with specific antisera. In all cases, both subunits cosedimented, indicating that the subunits are likely complexed as heterotrimers. When extracted with Lubrol all of the G proteins sedimented with rates of about 4.5 S (consistent with heterotrimers) whereas digitonin extracted 60% of the G proteins with peaks at 11 S; 40% pelleted as larger structures. Digitonin-extracted Gi was cross-linked by p-phenylenedimaleimide, yielding structures too large to enter polyacrylamide gels. No cross-linking of Lubrol-extracted Gi occurred. Treatment of the membranes with guanosine 5'-[gamma-thio]triphosphate and Mg2+ yielded digitonin-extracted structures with peak sedimentation values of 8.5 S--i.e., comparable to that of purified G(o) in digitonin and considerably larger than the Lubrol-extracted 2S structures representing the separated alpha and beta gamma subunits formed by the actions of guanosine 5'-[gamma-thio]triphosphate. It is concluded that the multimeric structures of G proteins in brain membranes are at least partially preserved in digitonin and that activation of these structures in membranes yields monomers of G proteins rather than the disaggregated products (alpha and beta gamma complexes) observed in Lubrol. It is proposed that hormones and GTP affect the dynamic interplay between multimeric G proteins and receptors in a fashion analogous to the actions of ATP on the dynamic interactions between myosin and actin filaments. Signal transduction is mediated by activated monomers released from the multimers during the activation process.  相似文献   

11.
Using a cytosol and nucleotide dependent assay that we previously developed, we have investigated the requirement for coat proteins in the in vitro production of trans-Golgi network (TGN)-derived vesicles from a Madin-Darby canine kidney (MDCK) cell Golgi fraction that contains the 35S-labeled, terminally glycosylated, envelope glycoprotein of vesicular stomatitis virus (VSV-G) accumulated in the TGN. We found that the TGN-derived vesicles, like those involved in intra-Golgi transport and in retrograde transport to the endoplasmic reticulum, contain a coatomer coat and that coatomer is required for their formation. Thus, after they are produced with GTPgammaS, the coated vesicles could be captured on beads containing anticoatomer antibody. Moreover, a cytosolic protein fraction depleted of coatomer could not support vesicle formation but it did so after purified coatomer was added. We also determined that P200/myosin II does not play an essential role in the in vitro generation of TGN-derived vesicles. Thus, removal of this protein from the cytosol, by differential salt precipitation or binding to phalloidin-induced actin filaments, had no effect on vesicle generation. Nevertheless, immunodepletion of cytosol using the anti-P200/myosin II AD7 antibody abolished vesicle generation and that antibody was capable of effectively immunocapturing coated vesicles, even when these were generated in the absence of P200/myosin II. These effects, however, are explained by the unexpected finding that the AD7 antibody interacts with undenatured coatomer.  相似文献   

12.
Movement of material between intracellular compartments takes place through the production of transport vesicles derived from donor membranes. Vesicle budding that results from the interaction of cytoplasmic coat proteins (coatomer and clathrin) with intracellular organelles requires a type of GTP-binding protein termed ADP-ribosylation factor (ARF). The GTPase cycle of ARF proteins that allows the uncoating and fusion of a transport vesicle with a target membrane is mediated by ARF-dependent GTPase-activating proteins (GAPs). A previously identified yeast protein, Gcs1, exhibits structural similarity to a mammalian protein with ARF-GAP activity in vitro. We show herein that the Gcs1 protein also has ARF-GAP activity in vitro using two yeast Arf proteins as substrates. Furthermore, Gcs1 function is needed for the efficient secretion of invertase, as expected for a component of vesicle transport. The in vivo role of Gcs1 as an ARF GAP is substantiated by genetic interactions between mutations in the ARF1/ARF2 redundant pair of yeast ARF genes and a gcs1-null mutation; cells lacking both Gcs1 and Arf1 proteins are markedly impaired for growth compared with cells missing either protein. Moreover, cells with decreased levels of Arf1 or Arf2 protein, and thus with decreased levels of GTP-Arf, are markedly inhibited for growth by increased GCS1 gene dosage, presumably because increased levels of Gcs1 GAP activity further decrease GTP-Arf levels. Thus by both in vitro and in vivo criteria, Gcs1 is a yeast ARF GAP.  相似文献   

13.
Tip20p is an 80 kDa cytoplasmic protein bound to the cytoplasmic surface of the endoplasmic reticulum (ER) by interaction with the type II integral membrane protein Sec20p. Both proteins are required for vesicular transport between the ER and Golgi complex. Recently, sec20-1 was found to be defective in retrograde transport. A collection of temperature-sensitive tip20 mutants are shown to be lethal in combination with ufe1-1, a target SNARE of the ER and ret2-1, yeast delta-COP. A subset of tip20 mutants was found to be lethal in combination with sec20-1, sec21-1, sec22-3 and sec27-1. Since all pairwise combinations of a tip20 mutant, sec20-1, and ufe1-1 are lethal, Tip20p and Sec20p might be part of the docking complex for Golgi-derived retrograde transport vesicles. Since carboxy-terminal tip20 truncations are lethal in combination with mutants in three coatomer subunits, Tip20p might be involved in binding or uncoating of COPI coated retrograde transport vesicles.  相似文献   

14.
cDNA encoding a hormone- and guanine nucleotide-stimulated adenylyl cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] (type 6) from rat liver and kidney has been cloned and expressed. This enzyme is stimulated by forskolin, guanosine 5'-[gamma-thio]triphosphate, and isoproterenol plus GTP but is not stimulated by beta gamma subunits of guanine nucleotide-binding proteins. A second form (type 5), which is 75% similar to type 6, has also been cloned. Both types 5 and 6 cDNAs have multiple messages. PCR-based detection of the mRNA for the type 5 and 6 enzymes indicates that both are widely distributed. Homology analyses indicate at least four distinct subfamilies of guanine nucleotide stimulatory protein-regulated adenylyl cyclases. Types 5 and 6 enzymes define one distinct subfamily of mammalian adenylyl cyclases. Diversity of one guanine nucleotide-binding protein-regulated effector may allow different modes of regulation of cell-surface signal transmission.  相似文献   

15.
We identified the phosphatidylinositol transfer protein (PITP) as being responsible for a powerful latent, nucleotide-independent, Golgi-vesiculating activity that is present in the cytosol but is only manifested as an uncontrolled activity in a cytosolic protein subfraction, in which it is separated from regulatory components that appear to normally limit its action to the scission of COPI-coated buds from trans-Golgi network membranes. A specific anti-PITP antibody that recognizes the two mammalian PITP isoforms fully inhibited the capacity of the cytosol to support normal vesicle generation as well as the uncontrolled vesiculating activity manifested by the cytosolic protein subfraction. The phosphatidylinositol- (PI) loaded form of the yeast PITP, Sec14p, but not the phosphatidylcholine- (PC) loaded form of the protein, was capable of substituting for the cytosolic subfraction in promoting the scission of coated buds from the trans-Golgi network. At higher concentration, however, Sec14p, when loaded with PI, but not with PC or phosphatidylglycerol, caused by itself an indiscriminate vesiculation of uncoated Golgi membranes that could be suppressed by PC-Sec14p, which also suppresses the uncontrolled vesiculation caused by the cytosolic subfraction. We propose that, by delivering PI to specific sites in the Golgi membrane near the necks of coated buds, PITP induces local changes in the organization of the lipid bilayer, possibly involving PI metabolites, that triggers the fusion of the ectoplasmic faces of the Golgi membrane necessary for the scission of COPI-coated vesicles.  相似文献   

16.
Bordetella dermonecrotizing toxin causes assembly of actin stress fibers and focal adhesions in some cultured cells and induces mobility shifts of the small GTP-binding protein Rho on electrophoresis. We attempted to clarify the molecular basis of the toxin action on Rho. Analysis of the amino acid sequence of toxin-treated RhoA revealed the deamidation of Gln-63 to Glu. The substitution of Glu for Gln-63 of RhoA by site-directed mutagenesis caused a mobility shift on electrophoresis, which was indistinguishable from that of the toxin-treated RhoA. Neither mutant RhoA-bearing Glu-63 nor toxin-treated RhoA significantly differed from untreated wild type RhoA in guanosine 5'-[gamma-thio]triphosphate binding activity but both showed a 10-fold reduction in GTP hydrolysis activity relative to untreated RhoA. C3H10T1/2 cells transfected with cDNA of the mutant RhoA bearing Glu-63 showed extensive formation of actin stress fibers similar to the toxin-treated cells. These results indicate that the toxin catalyzes deamidation of Gln-63 of Rho and renders it constitutively active, leading to formation of actin stress fibers.  相似文献   

17.
Galphao, the most abundant G protein in mammalian brain, occurs at least in two subforms, i.e., Galphao1 and Galphao2, derived by alternative splicing of the mRNA. A third Galphao1-related isoform, Galphao3, has been purified, representing about 30% of total Go in brain. Initial studies revealed distinct biochemical properties of Galphao3 as compared with other Galphao isoforms. In matrix-assisted laser desorption/ionization peptide mass mapping of gel-isolated Galphao1 and Galphao3, C-terminal peptides showed a difference of +1 Da for Galphao3. Nanoelectrospray tandem mass spectrometry sequencing revealed an Asp instead of an Asn at position 346 of Galphao3. Gel electrophoretic analysis of recombinant Galphao3 showed the same mobility as native Galphao3 but distinct to Galphao1. The conversion of 346Asn-->Asp changed the signaling properties, including the velocity of the basal guanine nucleotide-exchange reaction, which points to the involvement of the C terminus in basal guanosine 5'-[gamma-thio]triphosphate binding. No cDNA coding for Galphao3 was detected, suggesting an enzymatic deamidation of Galphao1 by a yet-unidentified activity. Therefore, Galpha heterogeneity is generated not only at the DNA or RNA levels, but also at the protein level. The relative amount of Galphao1 and Galphao3 differed from cell type to cell type, indicating an additional principle of G protein regulation.  相似文献   

18.
Class I ADP-ribosylation factors (ARFs) are essential for coatomer and clathrin coat assembly and vesicular transport in the Golgi apparatus. However, little is known about the in vivo regulation of ARF actions. Recently we cloned arfaptin 1, a 39 kDa protein that binds active, GTPgammaS-liganded ARF and translocates with it to Golgi membranes. Here we show that phorbol ester-stimulated phospholipase D (PLD) activity is inhibited in arfaptin 1-overexpressing NIH 3T3 cells and that arfaptin 1 inhibits ARF activation of Golgi-associated PLD. Since PLD activity is thought to play a role in regulating vesicular transport in the secretory pathway, we determined the rate of glycosylation of vesicular stomatitis virus glycoprotein as a measure of protein transport from the endoplasmic reticulum through the Golgi apparatus. Arfaptin 1 overexpression was found to decrease the rate of this reaction approximately two-fold. These data suggest that arfaptin 1 is a regulator of ARF action in the Golgi apparatus.  相似文献   

19.
ADP ribosylation factor (ARF) is thought to play a critical role in recruiting coatomer (COPI) to Golgi membranes to drive transport vesicle budding. Yeast strains harboring mutant COPI proteins exhibit defects in retrograde Golgi to endoplasmic reticulum protein transport and striking cargo-selective defects in anterograde endoplasmic reticulum to Golgi protein transport. To determine whether arf mutants exhibit similar phenotypes, the anterograde transport kinetics of multiple cargo proteins were examined in arf mutant cells, and, surprisingly, both COPI-dependent and COPI-independent cargo proteins exhibited comparable defects. Retrograde dilysine-mediated transport also appeared to be inefficient in the arf mutants, and coatomer mutants with no detectable anterograde transport defect exhibited a synthetic growth defect when combined with arf1Delta, supporting a role for ARF in retrograde transport. Remarkably, we found that early and medial Golgi glycosyltransferases localized to abnormally large ring-shaped structures. The endocytic marker FM4-64 also stained similar, but generally larger ring-shaped structures en route from the plasma membrane to the vacuole in arf mutants. Brefeldin A similarly perturbed endosome morphology and also inhibited transport of FM4-64 from endosomal structures to the vacuole. Electron microscopy of arf mutant cells revealed the presence of what appear to be hollow spheres of interconnected membrane tubules which likely correspond to the fluorescent ring structures. Together, these observations indicate that organelle morphology is significantly more affected than transport in the arf mutants, suggesting a fundamental role for ARF in regulating membrane dynamics. Possible mechanisms for producing this dramatic morphological change in intracellular organelles and its relation to the function of ARF in coat assembly are discussed.  相似文献   

20.
Suramin acts as a G protein inhibitor because it inhibits the rate-limiting step in activation of the Galpha subunit, i.e., the exchange of GDP for GTP. Here, we have searched for analogues that are selective for Gsalpha. Two compounds have been identified: NF449 (4,4',4",4'"-[carbonyl-bis[imino-5,1,3-benzenetriyl bis-(carbonylimino)]]tetrakis-(benzene-1,3-disulfonate) and NF503 (4, 4'-[carbonylbis[imino-3,1-phenylene-(2, 5-benzimidazolylene)carbonylimino]]bis-benzenesulfonate). These compounds (i) suppress the association rate of guanosine 5'-[gamma-thio]triphosphate ([35S]GTP[gammaS]) binding to Gsalpha-s but not to Gialpha-1, (ii) inhibit stimulation of adenylyl cyclase activity in S49 cyc- membranes (deficient in endogenous Gsalpha) by exogenously added Gsalpha-s, and (iii) block the coupling of beta-adrenergic receptors to Gs with half-maximum effects in the low micromolar range. In contrast to suramin, which is not selective, NF503 and NF449 disrupt the interaction of the A1-adenosine receptor with its cognate G proteins (Gi/Go) at concentrations that are >30-fold higher than those required for uncoupling of beta-adrenergic receptor/Gs tandems; similarly, the angiotensin II type-1 receptor (a prototypical Gq-coupled receptor) is barely affected by the compounds. Thus, NF503 and NF449 fulfill essential criteria for Gsalpha-selective antagonists. The observations demonstrate the feasibility of subtype-selective G protein inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号