首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Natural polymers are particularly interesting due to their richness in nature, very low cost and principally biodegradation properties. For these reasons different solid polymeric electrolytes (SPE) have been obtained using cellulose derivatives, starch, chitosan and rubber. This work presents the results of gelatin-based protonic SPEs, which were characterized by impedance spectroscopy, X-ray diffraction, UV-vis-NIR spectroscopy and scanning electron microscopy (SEM). The ionic conductivity results obtained for these SPEs were 4.5 × 10−5 S/cm and 3.6 × 10−4 S/cm at room temperature and 80 °C, respectively. Temperature-dependent ionic conductivity measurements were taken to analyze the mechanism of ionic conduction in polymer electrolytes. Good conductivity results combined with transparency and good adhesion to the electrodes have shown that gelatin-based SPEs are very promising materials to be used as solid electrolyte in electrochromic devices.  相似文献   

2.
Solid state glass electrolyte, xLi2O-(1 − x)(yB2O3-(1 − y)P2O5) glasses were prepared with wide range of composition, i.e. x = 0.35 - 0.5 and y = 0.17 - 0.67. This material system is one of the parent compositions for chemically and electrochemically stable solid-state electrolyte applicable to thin film battery. Lithium ion conductivity of Li2O-B2O3-P2O5 glasses was studied in the correlation to the structural variation of glass network by using FTIR and Raman spectroscopy. The measured ionic conductivity of the electrolyte at room temperature increased with x and y. The maximum conductivity of this glass system was 1.6 × 10−7 Ω−1 cm−1 for 0.45Li2O-0.275B2O3-0.275P2O5 at room temperature. It was shown that the addition of P2O5 reduces the tendency of devitrification and increases the maximum amount of Li2O added into glass former without devitrification. As Li2O and B2O3 contents increased, the conductivity of glass electrolyte increased due to the increase of three-coordinated [BO3] with a non-bridging oxygen (NBO).  相似文献   

3.
The optimized composition of PVdF-co-HFP-LiAlO2 based micro-porous nano-composite polymer electrolyte membranes (MPNCPEMs) was prepared with a preferential polymer dissolution process. Nitrogen adsorption isotherms and SEM micrographs showed that the enhanced ionic conductivity of polymer electrolyte was due to increase in pore-size, surface area and pore density, results an increase in the electrolyte uptake. The ac-impedance spectroscopy showed that the room temperature ionic conductivity of PVdF-co-HFP-LiAlO2 based polymer electrolyte membranes increased with the removal of PVA content and attained the maximum ionic conductivity of 8.12 × 10−3 S cm−1. The prepared MPNCPEM of high ionic conductivity was subjected into LSV study. Finally, the electrode/electrolyte interfacial resistance was evaluated by monitoring the impedance response at different time intervals.  相似文献   

4.
Cation substituted bismuth vanadate possesses high oxygen ion conductivity at lower temperatures. The ionic conductivity of this material at 300 °C is 50–100 times more than any other solid electrolyte. Three phases (α, β, γ) are observed in the substituted compound; α and γ are low and high conducting phase, respectively. Samples of Bi4V2−xCuxO11−δ (x = 0–0.4) were prepared by solid-state reaction technique. Impedance spectroscopy measurements were carried out in the frequency range of 100 Hz to 100 kHz using gold sputtered cylindrical shaped pellets to obtain bulk ionic conductivities as a function of the substitution and temperature. The change of slopes observed in the Arrhenius plots is in agreement with the phase transitions for all the compositions. The highest ionic conductivity of the Cu-substituted compound was observed in Bi4V1.8Cu0.2O11−δ which is attributed to its lower activation energy. Microstructural studies indicated the stabilization of high temperature γ-phase at low temperature in those samples whose ionic conductivity observed was higher.  相似文献   

5.
Nanoscale TiO2 particle filled poly(vinylidenefluoride-co-hexafluoropropylene) film is characterized by investigating some properties such as surface morphology, thermal and crystalline properties, swelling behavior after absorbing electrolyte solution, chemical and electrochemical stabilities, ionic conductivity, and compatibility with lithium electrode. Decent self-supporting polymer electrolyte film can be obtained at the range of <50 wt% TiO2. Different optimal TiO2 contents showing maximum liquid uptake may exist by adopting other electrolyte solution. Room temperature ionic conductivity of the polymer electrolyte placed surely on the region of >10−3 S/cm, and thus the film is very applicable to rechargeable lithium batteries. An emphasis is also be paid on that much lower interfacial resistance between the polymer electrolyte and lithium metal electrode can be obtained by the solid-solvent role of nanoscale TiO2 filler.  相似文献   

6.
In this contribution we present a soft matter solid electrolyte which was obtained by inclusion of a polymer (polyacrylonitrile, PAN) in LiClO4/LiTFSI-succinonitrile (SN), a semi-solid organic plastic electrolyte. Addition of the polymer resulted in considerable enhancement in ionic conductivity as well as mechanical strength of LiX-SN (X = ClO4, TFSI) plastic electrolyte. Ionic conductivity of 92.5%-[1 M LiClO4-SN]:7.5%-PAN (PAN amount as per SN weight) composite at 25 °C recorded a remarkably high value of 7 × 10−3 Ω−1 cm−1, higher by few tens of order in magnitude compared to 1 M LiClO4-SN. Composite conductivity at sub-ambient temperature is also quite high. At −20 °C, the ionic conductivity of (100 − x)%-[1 M LiClO4-SN]:x%-PAN composites are in the range 3 × 10−5-4.5 × 10−4 Ω−1 cm−1, approximately one to two orders of magnitude higher with respect to 1 M LiClO4-SN electrolyte conductivity. Addition of PAN resulted in an increase of the Young's modulus (Y) from Y → 0 for LiClO4-SN to a maximum of 0.4 MPa for the composites. Microstructural studies based on X-ray diffraction, differential scanning calorimetry and Fourier transform infrared spectroscopy suggest that enhancement in composite ionic conductivity is a combined effect of decrease in crystallinity and enhanced trans conformer concentration.  相似文献   

7.
The La2−xAxMo2O9−δ (A = Ca2+, Sr2+, Ba2+ and K+) series has been synthesised as nanocrystalline materials via a modification of the freeze-drying method. The resulting materials have been characterised by X-ray diffraction (XRD), thermal analysis (TG/DTA, DSC), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The high-temperature β-polymorph is stabilised for dopant content x > 0.01. The nanocrystalline powders were used to obtain dense ceramic materials with optimised microstructure and relative density >95%. The overall conductivity determined by impedance spectroscopy depends on both the ionic radius and dopant content. The conductivity decreases slightly as the dopant content increases in addition a maximum conductivity value was found for Sr2+ substitution, which show an ionic radii slightly higher than La3+ (e.g. 0.08 S cm−1 for La2Mo2O9 and 0.06 S cm−1 for La1.9Sr0.1Mo2O9−δ at 973 K). The creation of extrinsic vacancies upon substitution results in a wider stability range under reducing conditions and prevents amorphisation, although the stability is not enhanced significantly when compared to samples with higher tungsten content. These materials present high thermal expansion coefficients in the range of (13-16) × 10−6 K−1 between room temperature and 753 K and (18-20) × 10−6 K−1 above 823 K. The ionic transport numbers determined by a modified emf method remain above 0.98 under an oxygen partial pressure gradient of O2/air and decreases substantially under wet 5% H2-Ar/air when approaching to the degradation temperature above 973 K due to an increase of the electronic contribution to the overall conductivity.  相似文献   

8.
By making use of cation-exchange approach, montmorillonite-Cu2S (MMT-Cu2S) nanocomposite was prepared and characterized. Its conductivity was found to be 3.03 × 10−4 S m−1. Pyrrole was introduced to MMT-Cu2S and polymerized within the interlayer to obtain MMT-Cu2S-polypyrrole (MMT-Cu2S-PPY) nanocomposite. The materials were characterized by XRD, FT-IR and ac impedance measurements. The conductivities of both materials were found to be mainly electronic as confirmed by the dc polarization analysis but the former has a slight ionic conductivity due to mobile protons. In the latter the negatively charged clay sheet serves as a giant immobile anion and hence has no ionic component for the conductivity. The electronic conductivity is 2.65 S m−1.  相似文献   

9.
Gd2(Zr1−xNbx)2O7+x (0 ≤ x ≤ 0.2) ceramics are prepared via the solid state reaction process at 1973 K for 10 h in air. Gd2(Zr1−xNbx)2O7+x (x = 0.1, 0.2) ceramics exhibit an ordered pyrochlore-type structure, whereas Gd2Zr2O7 has a defective fluorite-type structure. The electrical property of Gd2(Zr1−xNbx)2O7+x ceramics is investigated by electrochemical impedance spectroscopy over a frequency range of 10 Hz to 8 MHz from 623 to 923 K. The electrical conductivity obeys the Arrhenius equation. The grain conductivity of Gd2(Zr1−xNbx)2O7+x ceramics varies with doping different Nb contents, and exhibits a maximum at the Nb content of x = 0.1 in the temperature range of 623-923 K. The conductivity in hydrogen atmosphere is a little bit higher than in air in the temperature range of 723-923 K, which indicates that the doping of Zr4+ by Nb5+ can increase the proton-type conduction and reduce the oxide-ionic conduction. The conduction of Gd2(Zr1−xNbx)2O7+x is not a pure oxide-ionic conductor.  相似文献   

10.
The ionic conductivity and phase arrangement of solid polymeric electrolytes based on the block copolymer polyethylene-b-poly(ethylene oxide) (PE-b-PEO) and LiClO4 have been investigated. One set of electrolytes was prepared from copolymers with 75% of PEO units and another set was based on a blend of copolymer with 50% PEO units and homopolymers. The differential scanning calorimetry (DSC) results, for electrolytes based on the copolymer with 75% of PEO units, were dominated by the PEO phase. The PEO block crystallinity dropped and the glass transition increased with salt addition due to the coordination of the cation by PEO oxygen. The conductivity for copolymers 75% PEO-based electrolyte with 15 wt% of salt was higher than 10−5 S/cm at room temperature and reached to 10−3 S/cm at 100 °C on a heating measurement. The blend of PE-b-PEO (50% PEO)/PEO/PE showed a complex thermal behavior with decoupled melting of the blocks and the homopolymers. Upon salt addition the endotherms associated with PEO domains disappeared and the PE crystals remained untouched. The conductivity results were limited at 100 °C to values close to 10−4 S/cm and at room temperature values close to 3 × 10−6 S/cm were obtained for the 15 wt% salt electrolyte. Raman study showed that the ionic association of the highly concentrated blend electrolytes at room temperature is not significant. Therefore, the lower values of conductivity in the case of the blend with 50% PEO can be assigned to the higher content of PE domains leading to a morphology with lower connectivity for ionic conduction both in the crystalline and melted state of the PE domains.  相似文献   

11.
Members of the solid-solution series Ce1−xSrxPO4−δ (x = 0, 0.01, 0.02) with mixed protonic and electronic transport have been synthesized by a nitrate-decomposition method followed by sintering at 1450 °C. Impedance spectroscopy is employed to estimate the bulk electrical conductivity in wet (∼0.03 atm) and dry atmospheres of O2 and 10%H2:90%N2. Conductivity increases with dopant concentration (x), oxygen partial pressure (pO2) and water vapour partial pressure (pH2O) reaching ∼3.5 × 10−3 S cm−1 at 600 °C for x = 0.02 in wet O2. Activation energies (Ea) for the bulk conductivity of Ce0.98Sr0.02PO4−δ below 650 °C are 0.44 and 0.78 eV for wet oxidising and wet reducing conditions, respectively. A moderate but positive pO2+n power-law dependence (n < 1/10) of conductivity is exhibited in the pO2 range 10−2.5 to 10−1 atm, consistent with mixed ionic and p-type electronic transport. Thermogravimetric analysis indicates that the Sr-doped materials are stable in a CO2 atmosphere in the temperature range 25–1200 °C.  相似文献   

12.
A series of compounds La2Mo2−xWxO9 (x = 0-2) were synthesized using a freeze-dried precursor method at relatively low temperatures (673-823 K). These materials were characterised by thermogravimetric and differential thermal analysis (TG/DTA), differential scanning calorimetric (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM) and dilatometric measurements. Oxygen stoichiometry was evaluated by coulometric titration and thermogravimetric analysis at 873-1273 K. The ionic and electronic conductivities of these materials were analysed by impedance spectroscopy and a Hebb-Wagner ion-blocking method under moderately reducing conditions. The presence of W6+ leads to an increase of the stability range (about 10−16 Pa for La2Mo0.5W1.5O9 at 1073 K) and prevents oxygen loss and amorphisation. Within the stability range, the electronic conductivity increases gradually as the temperature increases and as the oxygen partial pressure reduces. This indicates that the electronic transport is mainly n-type as a result of the oxygen-content decreasing in the molybdate lattice. Further reduction of the oxygen partial pressure gave rise to the decomposition of La2Mo2−xWxO9, leading to the formation of new phases with molybdenum in lower oxidation states, which further enhances the electronic conductivity. The results of the coulometric titration and the thermogravimetric studies under a dry 5% H2/Ar flow suggest that tungsten doped lanthanum molybdate materials can be used as electrolyte only at low temperature and under moderate reducing conditions.  相似文献   

13.
Lieyu Hu 《Polymer》2006,47(6):2099-2105
Branched poly(N-allylethylenimine) (BPAEI), a solid state polymer electrolyte host, was synthesized by allylation of branched poly(ethylenimine) (BPEI). Allylation was essentially complete with the 2 and 1° nitrogen atoms of BPEI being mono-allylated and di-allylated, respectively, and with little or no quaternization. BPAEI can be radically cross-linked with and without lithium trifluoromethanesulfonate (LiTf) present to form free-standing, homogeneous, minimally hygroscopic films. BPAEI has a glass transition temperature (Tg) of −65 °C, as measured by differential scanning calorimetry (DSC), which increases with the concentration of initiator upon cross-linking using V-50 (2,2-azobis(2-amidino-propane) dihydrochloride) to −15 °C at a 10:1 nitrogen to initiator molar ratio (N:initiator). BPAEI with 20:1 N:Li+ (molar ratio) LiTf has a Tg of −48 °C, which increases with the concentration of radical initiator upon cross-linking using V-50 to 3 °C at 10:1 N:initiator. At compositions near 60:1 N:initiator, an unusual decrease in the rate at which Tg changes with cross-linking was observed, both with and without LiTf present, indicating that some undefined morphological changes occur. The effect of this morphological change resulted in the highest Ac conductivities at 60:1 N:initiator for all LiTf concentrations studied. At 20:1 N:Li+ LiTf and 60:1 N:initiator, the room temperature Ac conductivity was 1×10−8 S/cm which increased to 1×10−5 S/cm at 80 °C, the highest conductivity observed in the concentration ranges studied. Infrared spectroscopy (IR) showed that the concentrations of the individual ionic species present were largely independent of either LiTf concentration or cross-linking density, suggesting that changes in ion mobility, likely resulting from morphological changes, substantially control the ionic conductivity.  相似文献   

14.
Polymer electrolytes can be used favorably in photo-electrochemical solar cells. A possible electrolyte for this purpose is a polyacrylonitrile-MgI2 complex with plasticizers such as ethylene carbonate and propylene carbonate. The best ionic conductivity was obtained for samples containing 60 wt% of MgI2 salt with respect to the weight of polyacrylonitrile, for example, at 30 °C the conductivity is 1.9 × 10−3 S cm−1. The ionic contribution to the conductivity is dominant as shown by dc polarization tests. Furthermore, the glass transition temperature showed a minimum, −103.0 °C, for the sample with the highest conductivity indicating the importance of polymer chain flexibility for the conduction process. Measurements on a fabricated solar cell with this electrolyte exhibited an overall energy conversion efficiency of 0.84%. The short circuit current density, open circuit voltage and fill factor of the cell were 2.04 mA cm−2, 692 mV and 59.3%, respectively.  相似文献   

15.
A novel polyblend electrolyte consisting of KI and I2 dissolved in a blending polymer of polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG) was prepared. The formation of I3 in the polymer electrolyte was confirmed by X-ray photoelectron spectroscopy (XPS) characterization. Due to the coordinating and plasticizing effect by PVP, the ionic conductivity of the polyblend electrolyte is enhanced. The highest ionic conductivity of 1.85 mS cm−1 for the polyblend electrolyte was achieved by optimizing the compositions as 40 wt.% PVP + 60 wt.% PEG + 0.05 mmol g−1 I2 + 0.10 mmol g−1 KI. Based on the polyblend electrolyte, a DSSC with fill factor of 0.59, short-circuit density of 9.77 mA cm−2, open-circuit voltage of 698 mV and light-to-electricity conversion efficiency of 4.01% was obtained under AM 1.5 irradiation (100 mW cm−2).  相似文献   

16.
The micro-structural, compositional, temperature dependent dielectric and electrical properties of the Bi1.5Zn0.92Nb1.5−xTaxO6.92 solid solution has been investigated. The increasing Ta content from 0.2 to 1.5 caused; single phase formation, a pronounced grain size reduction from ∼7.0 to 2.5 μm, sharp decrease in the dielectric constant from 198 to 88 and an increase in the electrical conductivity from 3.16 × 10−10 to 5.0 × 10−9 (Ω cm)−1, respectively. The temperature dependent dielectric constant which is found to be frequency invariant in the frequency range of (0.0-2.0 MHz) exhibited a sharp change in the temperature coefficient of dielectric constant at a (doping independent) critical temperature of 395 K. The analysis of the measured data reflects a promising future for this type of pyrochlore to be used in high voltage passive device applications.  相似文献   

17.
The electrochemical behavior of a commercial LiCoO2 with spherical shape in a saturated Li2SO4 aqueous solution was investigated with cyclic voltammetry and electrochemical impedance spectroscopy. Three redox couples at ESCE = 0.87/0.71, 0.95/0.90 and 1.06/1.01 V corresponding to those found at ELi/Li+=4.08/3.83, 4.13/4.03 and 4.21/4.14 V in organic electrolyte solutions were observed. The diffusion coefficient of lithium ions is 1.649 × 10−10 cm2 s−1, close to the value in organic electrolyte solutions. The results indicate that the intercalation and deintercalation behavior of lithium ions in the Li2SO4 solution is similar to that in the organic electrolyte solutions. However, due to the higher ionic conductivity of the aqueous solution, current response and reversibility of redox behavior in the aqueous solution are better than in the organic electrolyte solutions, suggesting that the aqueous solution is favorable for high rate capability. The charge transfer resistance, the exchange current and the capacitance of the double layer vary with the charge voltage during the deintercalation process. At the peak of the oxidation (0.87 V), the charge transfer resistance is the lowest. These fundamental results provide a good base for exploring new safe power sources for large scale energy storage.  相似文献   

18.
We report the effect of Cu2+ ion on CaAl2O4 with different molar concentrations of 0.0, 0.4 and 0.8 M prepared by simple combustion method. The materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR) and scanning electron microscopy (SEM). DC electrical conductivity has also been measured to study the electrical behavior of the materials. The XRD patterns confirm the formation of single-phase CaAl2O4 along with some impurity phases like CaAl4O7, CaAl12O19 and Ca12Al14O33. The FT-IR spectra show the stretching and bending vibrations of the synthesized compounds. DC electrical conductivity of the Ca1−xCuxAl2O4 is found to vary from 26.46 × 10−4 to 515.68 × 10−4 S cm−1 for x = 0.0 to x = 0.8 at the measuring temperature of 1000 °C. SEM images show the morphological features of the compounds.  相似文献   

19.
Microporous composite gel polymer electrolyte (CGPE) has been prepared by incorporating the home-made silica aerogel (SAG) particles into the poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer/LiClO4 matrix. The ionic transport behavior of the electrolyte is studied with various experimental techniques such as AC impedance, X-ray diffraction (XRD), infrared (IR) spectra, nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA), etc. The results reveal that the SAG particles are well dispersed in the electrolytes and incorporate with the other components of the CGPEs. The solid-state 7Li NMR study has confirmed the interactions of lithium ion with SAG, polymer and plasticizers, causing to form the microporous structure and reduce the glass transition temperature and crystallinity, resulting in an increase in ionic conductivity of the CGPE. The best ionic conductivity (1.04 × 10−2 S/cm at room temperature) is obtained from the composite polymer electrolyte containing 4 wt% of SAG, which is approximately four times higher than the ionic conductivity of the electrolyte without the filler.  相似文献   

20.
New types of polymer electrolytes based on agar have been prepared and characterized by impedance spectroscopy, X-ray diffraction measurements, UV-vis spectroscopy and scanning electronic microscopy (SEM). The best ionic conductivity has been obtained for the samples containing a concentration of 50 wt.% of acetic acid. As a function of the temperature the ionic conductivity exhibits an Arrhenius behavior increasing from 1.1 × 10−4 S/cm at room temperature to 9.6 × 10−4 S/cm at 80 °C. All the samples showed more than 70% of transparency in the visible region of the electromagnetic spectrum, a very homogeneous surface and a predominantly amorphous structure. All these characteristics imply that these polymer electrolytes can be applied in electrochromic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号