首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports the electrochemical characterization of a micro-scale FeSn2 electrode in a lithium battery. The electrode is proposed as anode material for advanced lithium ion batteries due to its characteristics of high capacity (500 mAh g−1) and low working voltage (0.6 V vs. Li). The electrochemical alloying process is studied by cyclic voltammetry and galvanostatic cycling while the interfacial properties are investigated by electrochemical impedance spectroscopy. The impedance measurements in combination with the galvanostatic cycling tests reveal relatively low overall impedance values and good electrochemical performance for the electrode, both in terms of delivered capacity and cycling stability, even at the higher C-rate regimes.  相似文献   

2.
Electrochemical performance of an aqueous rechargeable lithium battery (ARLB) containing a LiV3O8 (negative electrode) and LiCoO2 (positive electrode) in saturated LiNO3 aqueous electrolyte was studied. These two electrode materials are stable in the aqueous solution and intercalation/deintercalation of lithium ions occurs within the window of electrochemical stability of water. The obtained capacity of this cell system is about 55 mAh/g based on the mass of the positive electrode, which is lower than the corresponding one in the non-aqueous lithium ion battery. However, its specific capacity can be compared with those of the lead acid and Ni-Cd batteries. In addition, initial results show that this cell system is good in cycling.  相似文献   

3.
Several 1-alkyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquids (alkyl-DMimTFSI) were prepared by changing carbon chain lengths and configuration of the alkyl group, and their electrochemical properties and compatibility with Li/LiFePO4 battery electrodes were investigated in detail. Experiments indicated the type of ionic liquid has a wide electrochemical window (−0.16 to 5.2 V vs. Li+/Li) and are theoretically feasible as an electrolyte for batteries with metallic lithium as anode. Addition of vinylene carbonate (VC) improves the compatibility of alkyl-DMimTFSI-based electrolytes towards lithium anode and LiFePO4 cathode, and enhanced the formation of solid electrolyte interface to protect lithium anodes from corrosion. The electrochemical properties of the ionic liquids obviously depend on carbon chain length and configuration of the alkyl, including ionic conductivity, viscosity, and charge/discharge capacity etc. Among five alkyl-DMimTFSI-LiTFSI-VC electrolytes, Li/LiFePO4 battery with the electrolyte-based on amyl-DMimTFSI shows best charge/discharge capacity and reversibility due to relatively high conductivity and low viscosity, its initial discharge capacity is about 152.6 mAh g−1, which the value is near to theoretical specific capacity (170 mAh g−1). Although the battery with electrolyte-based isooctyl-DMimTFSI has lowest initial discharge capacity (8.1 mAh g−1) due to relatively poor conductivity and high viscosity, the value will be dramatically added to 129.6 mAh g−1 when 10% propylene carbonate was introduced into the ternary electrolyte as diluent. These results clearly indicates this type of ionic liquids have fine application prospect for lithium batteries as highly safety electrolytes in the future.  相似文献   

4.
Sulfolane (also referred to as tetramethylene sulfone, TMS) containing LiPF6 and vinylene carbonate (VC) was tested as a non-flammable electrolyte for a graphite |LiFePO4 lithium-ion battery. Charging/discharging capacity of the LiFePO4 electrode was ca. 150 mAh g−1 (VC content 5 wt%). The capacity of the graphite electrode after 10 cycles establishes at the level of ca. 350 mAh g−1 (C/10 rate). In the case of the full graphite |1 M LiPF6 + TMS + VC 10 wt% |LiFePO4 cell, both charging and discharging capacity (referred to cathode mass) stabilized at a value of ca. 120 mAh g−1. Exchange current density for Li+ reduction on metallic lithium, estimated from electrochemical impedance spectroscopy (EIS) experiments, was jo(Li/Li+) = 8.15 × 10−4 A cm−2. Moreover, EIS suggests formation of the solid electrolyte interface (SEI) on lithium, lithiated graphite and LiFePO4 electrodes, protecting them from further corrosion in contact with the liquid electrolyte. Scanning electron microscopy (SEM) images of pristine electrodes and those taken after electrochemical cycling showed changes which may be interpreted as a result of SEI formation. No graphite exfoliation was observed. The main decomposition peak of the LiPF6 + TMS + VC electrolyte (TG/DTA experiment) was present at ca. 275 °C. The LiFePO4(solid) + 1 M LiPF6 + TMS + 10 wt% VC system shows a flash point of ca. 150 °C. This was much higher in comparison to that characteristic of a classical LiFePO4 (solid) + 1 M LiPF6 + 50 wt% EC + 50 wt% DMC system (Tf ≈ 37 °C).  相似文献   

5.
The electrochemical performance of aqueous rechargeable lithium battery (ARLB) with LiV3O8 and LiMn2O4 in saturated LiNO3 electrolyte is studied. The results indicate that these two electrode materials are stable in the aqueous solution and no hydrogen or oxygen produced, moreover, intercalation/de-intercalation of lithium ions occurred within the range of electrochemical stability of water. The electrochemical performance tests show that the specific capacity of LiMn2O4 using as the cathode of ARLB is similar to that of ordinary lithium-ion battery with organic electrolyte, which works much better than the formerly reported. In addition, the cell systems exhibit good cycling performance. Therefore, it has great potential comparing with other batteries such as lead acid batteries and alkaline manganese batteries.  相似文献   

6.
Manganese dissolution into an electrolyte from the spinel LiMn2O4 in the lithium-ion cell has been recently investigated. In order to study the influence of the dissolved manganese species on the lithium intercalation/deintercalation into a natural graphite electrode, the electrochemical behavior of graphite was investigated in 1 mol dm−3 LiClO4 electrolyte solution containing a small amount of Mn(II) by the addition of manganese(II) perchlorate. During the charging process, Mn(II) ions were firstly electroreduced on the electrode around 1.0 V versus Li/Li+ followed by irreversible decomposition of the electrolyte and lithium intercalation into the graphite. By microscopic observation of the graphite surface, manganese deposition was confirmed after the charge/discharge test. Due to the manganese deposition, the reversible capacity of the graphite electrode was drastically decreased. Furthermore, the cyclability of the anode was degraded with the amount of the manganese additive increasing. We compared these results with those of the cobalt(II) and nickel(II) additives by dissolving the corresponding perchlorates. Furthermore, we discussed the influence in practical cells based on the consideration of electrochemistry of the deposited metals.  相似文献   

7.
ZnO was coated on LiNi0.5Co0.25Mn0.25O2 cathode (positive electrode) material for lithium ion battery via sol–gel method to improve the performance of LiNi0.5Co0.25Mn0.25O2. The X-ray diffraction (XRD) results indicated that the lattice structure of LiNi0.5Co0.25Mn0.25O2 was not changed distinctly after surface coating and part of Zn2+ might dope into the lattice of the material. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) proved that ZnO existed on the surface of LiNi0.5Co0.25Mn0.25O2. Charge and discharge tests showed that the cycle performance and rate capability were improved by ZnO coating, however, the initial capacity decreased dramatically with increasing the amount of ZnO. Differential scanning calorimetry (DSC) results showed that thermal stability of the materials was improved. The XPS spectra after charge–discharge cycles showed that ZnO coated on LiNi0.5Co0.25Mn0.25O2 promoted the decomposition of the electrolyte at the early stage of charge–discharge cycle to form more stable SEI layer, and it also can scavenge the free acidic HF species from the electrolyte. The electrochemical impedance spectroscopy (EIS) results showed ZnO coating could suppress the augment of charge transfer resistance upon cycling.  相似文献   

8.
The capacity fading mechanism of lithium-ion cell was studied by disassembling the charge-discharged cells and analyzing their electrodes using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), etc. Cu ion dissolved from current collector of anode and Mn ion dissolved from LiMn2O4 spinel (cathode) were all existing in solid electrolyte interface (SEI) layer on carbon anode as Cu2O and MnO or MnO2, respectively. These depositions of Cu and Mn oxides did not uniformly deposited on the anode side, and most of them were detected on the carbon surface nearby to the separator side. The SEI layer is hard and about 0.3 μm in thickness. Furthermore, the cycling performance of the cells can be improved by adding 1,2,3-benzotrazole (a corrosion inhibitor of Cu) before assembling the cell, it then coordinates strongly with Cu ions into the electrolyte. From the results, it is obvious that the existing of Cu oxide as well as Mn oxide in the SEI layer, which blocks the normal intercalation of the lithium ions, is one of the factors for the capacity fading of the cells.  相似文献   

9.
New functionalized ILs based on quaternary ammonium cations with three or four ether groups and TFSI anion were synthesized and characterized. Physical and electrochemical properties, including melting point, thermal stability, viscosity, conductivity and electrochemical stability were investigated for these ILs. Five ILs with lower viscosity in these ILs were applied in lithium battery as new electrolytes. Behavior of lithium redox and charge–discharge characteristics of lithium battery were investigated for these IL electrolytes with 0.6 mol kg−1 LiTFSI. Lithium plating and striping on Ni electrode could be observed in these IL electrolytes. Li/LiFePO4 cells using these IL electrolytes without additives had good capacity and cycle property at the current rate of 0.1 C, and the N(2o1)3(2o2)TFSI and N2(2o1)3TFSI electrolytes owned better rate property.  相似文献   

10.
A survey of the electrochemical stability of electrostatic spray deposited thin film of LiMn2O4 was performed in LiClO4-EC-PC, LiBF4-EC-PC, and LiPF6-EC-PC solutions at 55 °C. The solution resistance, the surface film resistance, and the charge-transfer resistance were all found to depend on the electrolyte composition. Among the LiX-salts studied, the lowest charge transfer-resistance, and surface layer resistance were obtained in LiBF4-EC-PC solution. There is no major influence of the electrolyte solution compositions upon lithium ion transport in the LiMn2O4 bulk at 55 °C. The diffusion coefficient of lithium in the solid phase varied within 10−10-10−8 cm2 s−1 in the three solutions. In general, it seems that in LiBF4 solutions, the surface chemistry is the most stable in the three solutions examined, and hence the electrode impedance in LiBF4 solutions was the lowest. In LiPF6 solutions, HF seems to play an important role, and thus, the electrode impedance is relatively high due to the precipitation of surface LiF.  相似文献   

11.
In this work we evaluate the safety characteristics of an advanced Sn-C/EC:PC 1:1, LiPF6 PVdF gel electrolyte (GPE)/LiNi0.5Mn1.5O4 lithium ion polymer battery. The tests are performed by using a complex analysis that combines Differential Scanning Calorimetry (DSC) Thermal Gravimetric Analysis (TGA), and Mass Spectrometry (MS). This is a very convenient tool since it detects eventual thermal decomposition processes and provides information on the nature of their products. The results of the DSC-TGA-MS analysis are here reported and discussed. They demonstrate that both the anode and the cathode sides of the battery may stand temperatures up to ca. 200 °C without undergoing thermal decomposition. This is a convincing evidence that the Sn-C/LiNi0.5Mn1.5O4 lithium ion polymer battery is safe.  相似文献   

12.
Different aqueous-based electrolytes have been tested in order to improve the electrochemical performance of hybrid (asymmetric) carbon/MnO2 electrochemical capacitor (EC). Chloride and bromide aqueous solutions lead to the formation of Cl2 and Br2 respectively upon oxidation of the corresponding salt, thus limiting the useful electrochemical window of the MnO2 electrode and producing gas evolution (in the case of chloride salts) detrimental to the cycling ability of an hybrid device. For sulfate and nitrate salts, MnO2 electrode exhibits a 20% increase in capacitance when lithium is used as the cation compared to sodium or potassium salts, probably due to partial lithium intercalation in the tunnels of α-MnO2 structure. The higher ionic conductivity and solubility of LiNO3 has led to the investigation of this electrolyte in carbon/MnO2 supercapacitor compared to standard hybrid cell using K2SO4. A lower resistance increase was evidenced when the temperature was decreased down to −10 °C. Long term cycling ability of carbon/MnO2 supercapacitor was also evidenced with 5 M LiNO3 electrolyte.  相似文献   

13.
《Ceramics International》2020,46(2):1954-1961
Na-superionic conductor (NASICON) structured NaTi2(PO4)3 (NTP) as anode shows broad prospect in aqueous lithium ion battery. However, inherent low electrical conductivity of NaTi2(PO4)3 remains a pivotal issue to be resolved. Herein, we report N-doped carbon encapsulated NaTi2(PO4)3 microflower (NTP-CN) as anode for aqueous lithium ion battery, which is prepared via solvothermal way. NTP-CN with unique structural feature displays superb electrochemical performances. It delivers the discharge capacities of 131.2, 110.1, and 84.3 mAh g−1 at 0.2, 3.0, and 15 C, respectively, 38.8, 33.8, and 51.1 mAh g−1 higher than these of pristine NTP. NTP-CN also shows remarkable cycling stability at 6 C after 1000 cycles (capacity retention: 88.8%), superior to NTP (70.7%). The outstanding properties of NTP-CN may be due to that microflower structure can increase touching area between electrolyte and electrode, and carbon coating for electrode improves stability in aqueous electrolyte and ameliorates electrical conductivity. Moreover, nitrogen doping can further enhance hydrophilicity and conductivity of the sample, and also form lots of defects on electrode surface, which is beneficial for the intercalation/deintercalation of Li ions. This work reveals that the combination of microflower structure and N-doped carbon layer offers a promising method to improve electrochemical performances of NaTi2(PO4)3.  相似文献   

14.
A composite lithium battery electrode of LiMn2O4 in combination with a gel electrolyte (1 M LiBF4/24 wt% PMMA/1:1 EC:DEC) has been investigated by galvanostatic cycling experiments and electrochemical impedance spectroscopy (EIS) at various temperatures, i.e. −3<T<56 °C. For analysis of EIS data, a mathematical model taking into account local kinetics and potential distribution in the liquid phase within the porous electrode structure was used. Reasonable values of the double-layer capacitance, the exchange-current density and the solid phase diffusion were found as a function of temperature. The apparent activation energy of the charge-transfer (∼65 kJ mol−1), the solid phase transfer (∼45 kJ mol−1) and of the ionic bulk and effective conductance in the gel phase (∼34 kJ mol−1), respectively, were also determined. The kinetic results related to ambient temperature were compared to those obtained in the corresponding liquid electrolyte. The incorporated PMMA was found to reduce the ionic conductivity of the free electrolyte, and it was concluded that the presence of 24 wt% PMMA does not have a significant influence on the kinetic properties of LiMn2O4.  相似文献   

15.
A study of the electrochemical properties of a PEO-based polymer electrolyte with nanometric ZrO2 as ceramic filler has been carried out in order to confirm an earlier reported model dealing with the role of ceramic fillers within PEO-based polymer electrolytes as components that enhance such properties as conductivity, lithium transference number, compatibility with lithium metal electrodes and cyclability. A prototype of a lithium polymer battery, based on a membrane made from a nanocomposite polymer electrolyte doped with ZrO2, utilizing LiFePO4 + 1%Ag as cathode, has been assembled and galvanostatically cycled, resulting in excellent performance at temperatures ranging from 100 °C to 60 °C (close to the crystallization temperature of PEO).  相似文献   

16.
The LiMn2O4 electrode materials were synthesized by the conventional-hydrothermal and microwave-hydrothermal methods. The electrochemical performances of LiMn2O4 were studied as supercapacitors in LiNO3 electrolyte and lithium-ion battery cathodes. The microwave-hydrothermal method can synthesize LiMn2O4 electrode materials with reversible electrochemical reaction in a short reaction time and low reaction temperature than conventional-hydrothermal route. The capacitance of LiMn2O4 electrode increased with increasing crystallization time in conventional-hydrothermal route. The results showed that LiMn2O4 supercapacitors had similar discharge capacity and potential window (1.2 V) as that of ordinary lithium-ion battery cathodes. In LiNO3 aqueous electrolyte, the reaction kinetics of LiMn2O4 supercapacitors was very fast. Even, at current densities of 1 A/g and 5 A/g, aqueous electrolyte gave good capacity compared with that in organic electrolyte at a current density of 0.05 A/g.  相似文献   

17.
Present paper describes electrochemical performance of the all solid-state lithium polymer battery (LBP) using spinel-type Li4/3Ti5/3O4 which has been known as the potential candidate of anode materials.The assembled LPB with Li|solid polymer electrolyte(SPE)|Li4/3Ti5/3O4 construction showed stable charge-discharge cycles more than 300 times at 1 C condition. On the other hand, strong charge-discharge rate dependence for the specific capacity and initial capacity loss was indicated. Such a poor rate performance stemmed from low diffusivity of Li+ ion in the by-products produced by the decomposition of SPE components at the SPE|Li4/3Ti5/3O4 interface.  相似文献   

18.
电解液对锂离子电池性能的影响   总被引:1,自引:0,他引:1  
锂离子电池的性能与电解液有着密切的关系。电解液的组成主要是:有机溶剂、锂盐、添加剂。本文综述了电解液组成对锂离子电池电化学性能的影响规律;探讨了电解液量对锂离子电池性能的影响以及不同正极材料锂离子电池对电解液量的需求。  相似文献   

19.
The high flash point solvent adiponitrile (ADN) was investigated as co-solvent with ethylene carbonate (EC) for use as lithium-ion battery electrolyte. The flash point of this solvent mixture was more than 110 °C higher than that of conventional electrolyte solutions involving volatile linear carbonate components, such as diethyl carbonate (DEC) or dimethyl carbonate (DMC). The electrolyte based on EC:ADN (1:1 wt) with lithium tetrafluoroborate (LiBF4) displayed a conductivity of 2.6 mS cm−1 and no aluminum corrosion. In addition, it showed higher anodic stability on a Pt electrode than the standard electrolyte 1 M lithium hexafluorophosphate (LiPF6) in EC:DEC (3:7 wt). Graphite/Li half cells using this electrolyte showed excellent rate capability up to 5C and good cycling stability (more than 98% capacity retention after 50 cycles at 1C). Additionally, the electrolyte was investigated in NCM/Li half cells. The cells were able to reach a capacity of 104 mAh g−1 at 5C and capacity retention of more than 97% after 50 cycles. These results show that an electrolyte with a considerably increased flash point with respect to common electrolyte systems comprising linear carbonates, could be realized without any negative effects on the electrochemical performance in Li-half cells.  相似文献   

20.
The electrochemical behavior and surface characterization of manganese dioxide (MnO2) containing titanium disulphide (TiS2) as a cathode in aqueous lithium hydroxide (LiOH) electrolyte battery have been investigated. The electrode reaction of MnO2 in this electrolyte is shown to be lithium insertion rather than the usual protonation. MnO2 shows acceptable rechargeability as the battery cathode. The influence of TiS2 (1, 3 and 5 wt%) additive on the performance of MnO2 as a cathode has been determined. The products formed on reduction of the cathode material have been characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), fourier transform infrared spectroscopy (IR) and transmission electron microscopy (TEM). It is found that the presence of TiS2 to ≤3 wt% improves the discharge capacity of MnO2. However, increasing the additive content above this amount causes a decrease in its discharge capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号