首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report on electrical conductivity relaxation measurements of solid polymer electrolytes (SPE) based on poly(vinyl alcohol) (PVOH) and LiClO4 in which nanoporous Al2O3 particles with average pore diameter of 58 Å were dispersed. A power law frequency dependence of the real part of the electrical conductivity is observed as a function of temperature and composition. This behaviour is typical of systems in which correlated ionic motions in the SPE bulk material are responsible for ionic conductivity. This variation is well fitted to a Jonscher expression σ′(ω) = σ0[1 + (ω/ω0)p] where σ0 is the dc conductivity, ω0 the characteristic angular frequency relaxation and p is the fractional exponent between 0 and 1. For a prototype membrane with composition 0.9PVOH − 0.1LiClO4 + 7 wt.%Al2O3, it was found that the temperature dependence of σ0 and ω0, may be described by the VTF relationship, ? = ?0 exp[−B/(T − T0)], with approximately the same constant B and reference temperature T0, indicating that ion mobility is coupled to the motions of the polymer chains. Moreover, p decreased with increasing temperature, from 0.68 at T = 319 K, to 0.4 at T = 437 K, indicating weaker correlation effects among mobile ions when the temperature is increased.  相似文献   

2.
On the basis of our studies it results that dielectric properties of BaBi2Nb2O9 ceramics are sensitive to axial pressure applied. The pressure causes an increase of dispersion in the real part of dielectric permittivity ?′(T,f) and a rise in the temperature Tm at which the maximum in ?′(T,f) dependence occurs. The applied pressure induces in the ?′(T) dependence an additional step-like anomaly, which appears at the temperature TA < Tm. The applied pressure shifts both Tm and TA at the same rate, i.e. dTA/dX = dTm/dX = +14 °C/kbar at high axial pressure range, above the threshold pressure Xthresh. The Vogel–Fulcher relationship is employed to determine the axial pressure influence on relaxor properties of BBN ceramics. The simulated order parameter q takes non-zero values below Burn‘s temperature TB, where the polar clusters appear on cooling. For pressures higher than 0.8 kbar, the TB changes at the rate dTB/dX = −200 °C/kbar. The decrease in the difference between Burn's TB and the freezing Tf temperatures induced by the applied axial pressure is observed. This could be ascribed to the narrowing of temperature range of relaxor behavior.  相似文献   

3.
Ce2(WO4)3 ceramics have been synthesized by the conventional solid-state ceramic route. Ce2(WO4)3 ceramics sintered at 1000 °C exhibited ?r = 12.4, Qxf = 10,500 GHz (at 4.8 GHz) and τf = −39 ppm/°C. The effects of B2O3, ZnO–B2O3, BaO–B2O3–SiO2, ZnO–B2O3–SiO2 and PbO–B2O3–SiO2 glasses on the sintering temperature and microwave dielectric properties of Ce2(WO4)3 were investigated. The Ce2(WO4)3 + 0.2 wt% ZBS sintered at 900 °C/4 h has ?r = 13.7, Qxf = 20,200 GHz and τf = −25 ppm/°C.  相似文献   

4.
Solid state glass electrolyte, xLi2O-(1 − x)(yB2O3-(1 − y)P2O5) glasses were prepared with wide range of composition, i.e. x = 0.35 - 0.5 and y = 0.17 - 0.67. This material system is one of the parent compositions for chemically and electrochemically stable solid-state electrolyte applicable to thin film battery. Lithium ion conductivity of Li2O-B2O3-P2O5 glasses was studied in the correlation to the structural variation of glass network by using FTIR and Raman spectroscopy. The measured ionic conductivity of the electrolyte at room temperature increased with x and y. The maximum conductivity of this glass system was 1.6 × 10−7 Ω−1 cm−1 for 0.45Li2O-0.275B2O3-0.275P2O5 at room temperature. It was shown that the addition of P2O5 reduces the tendency of devitrification and increases the maximum amount of Li2O added into glass former without devitrification. As Li2O and B2O3 contents increased, the conductivity of glass electrolyte increased due to the increase of three-coordinated [BO3] with a non-bridging oxygen (NBO).  相似文献   

5.
Positron annihilation lifetime spectroscopy (PALS) and impedance spectroscopy (IS) have been employed to study the effect of temperature and pressure on the DC conductivity (σDC) and the mean hole volume (Vh) of a NaPF6 ethylene oxide based polyurethane electrolyte. The DC conductivity of the polymer electrolyte displayed a characteristic non-Arrhenius temperature dependence yielding acceptable values for both the “pseudo-activation energy” (B) and the “zero mobility temperature” (T0) from a VTF fit. Vh(T) showed a linear increase of 0.53 cm3 (mol K)−1. When extrapolating Vh(T) to 0 K a temperature very close to T0 from the VTF fit was obtained, which suggests a free volume mediated conductivity mechanism. This suggestion is further supported by the linear dependence of ln(σDC(T)) on . Conductivity was measured as a function of pressure (σDC(P)) with ln(σDC(P)) showing a characteristic decrease with increasing pressure. The activation volumes (VA) calculated from these measurements ranged from 45 to 20 cm3 mol−1 over a temperature from 304 to 365 K. Critical volumes calculated from two current free-volume models were found to be unrealistic. Combining the extra volume required for ionic motion (VA) with the available free volume (Vh) at the same temperature poses a realistic and ‘model-free’ figure of 117 cm3 mol−1 for the critical volume at 304 K. This equates roughly to the volume of 3-4 EO units. The pressure dependence of free volume (Vh(P)) for a polymer electrolyte has been measured for the first time, and yielded a linear decrease in Vh with increasing pressure. A linear dependence of σDC(P) on was also found. A comparison of the isothermal and isobaric dependence of σDC on illustrates the contribution of factors other than free volume have on charge carrier number and mobility. This comparison shows that the variation of Vh with temperature and the variation of Vh with pressure affect the conductivity in very different ways. These results clearly show that free volume cannot be considered the sole factor responsible for conductivity in polymer electrolytes.  相似文献   

6.
The microwave dielectric properties of Sm(Mg0.5Ti0.5)O3 incorporated with various amount of Bi2O3 and B2O3 additives have been investigated systematically. In this study, both Bi2O3 and B2O3 additives acting as a sintering aid can effectively lower the sintering temperature from 1550 °C to 1300 °C. The ionic radius of Bi3+ for a coordination number of 6 is 0.103 nm, whereas the ionic radius of B3+ is 0.027 nm. Clearly, the ionic radius of Bi3+ is greatly larger than one of B3+, which resulted in the specimens incorporated with Bi2O3 having larger lattice parameters and cell volume than those incorporated with B2O3. The experimental results show that no second phase was observed throughout the entire experiments. Depending on the interfacial tension, the liquid phase may penetrate the grain boundaries completely, in which case the grains will be separated from one another by a thin layer as shown in Sm(Mg0.5Ti0.5)O3 ceramics incorporated with Bi2O3. Whereas, in Sm(Mg0.5Ti0.5)O3 ceramics incorporated with B2O3, the volume fraction of liquid is high, the grains may dissolve into the liquid phase, and rapidly rearrange, in which case contact points between agglomerates will be dissolved due to their higher solubility in the liquid, leading plate-like shape microstructure.A dielectric constant (?r) of 29.3, a high Q × f value of 26,335 GHz (at 8.84 GHz), and a τf of −32.5 ppm/°C can be obtained for Sm(Mg0.5Ti0.5)O3 ceramics incorporated with 10 mol% Bi2O3 sintered at 1300 °C. While Sm(Mg0.5Ti0.5)O3 ceramics incorporated with 5 mol% B2O3 can effectively lower temperature coefficient of resonant frequency, which value is −21.6 ppm/°C. The Sm(Mg0.5Ti0.5)O3 ceramic incorporated with heavily Bi2O3 and B2O3 additives exhibits a substantial reduction in temperature (∼250 °C) and compatible dielectric properties in comparison with that of an un-doped one. This implied that this ceramic is suitable for miniaturization in the application of dielectric resonators and filters by being appropriately incorporated with a sintering aid.  相似文献   

7.
Microwave ceramics of Ba4(Nd0.7Sm0.3)9.33Ti18O54 with 0–3 wt% Ag additions were synthesized by a citrate sol–gel method. The BaO–B2O3–SiO2 glass was also added into the sol–gel derived BNST ceramic powders as sintering aids. The undoped, Ag- and BaBS-doped samples can be sintered at 1250 °C, 1150 °C and 1000 °C, respectively. The microstructure and dielectric properties were then controlled by doping Ag or BaBS glass. Near isoaxial grains with about 250 nm and typical columnar grains were obtained for the silver-doped and BaBS-doped samples, respectively. For the <1 wt% silver-doped samples, the dielectric constant and Q × f retained unaltered but τf decreased from 9 ppm/°C to 1.4 ppm/°C. With increasing silver content from 1 wt% to 3 wt%, the dielectric constant and τf significantly increased but Q × f decreased. For the BaBS-doped samples, both dielectric constant and Q × f decreased but τf increased with increasing BaBS content.  相似文献   

8.
Dy substituted CCTO ceramics were synthesized using solid state reaction method. Effect of Dy on structural, microstructural, dielectric and electrical properties has been studied over a wide temperature (300–500 K) and frequency range (100 Hz–1 MHz). Rietveld refinement, carried out on the samples, confirmed single phase formation and indicated overall decrease in lattice constant. Microstructure showed bimodal distribution of grains in CCTO with bigger grains surrounded by smaller grains. Dy substitution reduced grain size. Dy substitution in CCTO reduces the dielectric constant which may be attributed to increase of the Schottky potential barrier. The dielectric constant remains nearly constant in temperature range 300–400 K. The AC conductivity obeys a power law, σac=A fn, where n is the temperature dependent frequency exponent. The AC conductivity behaviour can be divided into three regions, over entire temperature range, depending on conduction processes. The relevant charge transport mechanisms have been discussed.  相似文献   

9.
A gelatin-based electrolyte has been developed and characterized by impedance spectroscopy, X-ray diffraction, UV-vis-NIR spectroscopy and atomic force microscopy (AFM). The heat treatment temperature was found the key factor affecting its ionic conductivity that increases from 1.5 × 10−5 S/cm to 4.9 × 10−4 S/cm by heating from room temperature up to 80 °C. The temperature dependence of the ionic conductivity exhibits an Arrhenius behavior. EC-devices with the configuration K-glass/Nb2O5:Mo EC-layer/gelatin-based electrolyte/(CeO2)x(TiO2)1−x ion-storage (IS) layer/K-glass, have been assembled and characterized. They show a good long time cyclic stability, but the change of the optical density measured at 550 nm after 25 000 cycles was only 0.13.  相似文献   

10.
The microwave dielectric properties of La2.98/3Ba0.01(Mg0.5Sn0.5)O3 ceramics prepared by the conventional solid-state method were investigated for application in mobile communication. A 100 °C reduction of the sintering temperature was obtained by using CuO as a sintering aid. A dielectric constant of 20.0, a quality factor (Q × f) of 50,100 GHz and a temperature coefficient of resonant frequency τf of −78.3 ppm/°C were obtained when La2.98/3Ba0.01(Mg0.5Sn0.5)O3 ceramics with 0.25 wt.% CuO were sintered at 1500 °C for 4 h.  相似文献   

11.
The effects of substitution of (Zn1/3Nb2/3) for Ti on the sintering behavior and microwave dielectric properties of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (0 ≤ x ≤ 4) ceramics have been investigated. The dielectric constant (?r) and the temperature coefficient of the resonant frequency (τf) of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 ceramics decreased with increasing x. However, the Q × f values enhanced with the substitution of (Zn1/3Nb2/3) for Ti. It was found that a small amount of MnCO3-CuO (MC) and ZnO-B2O3-SiO2 (ZBS) glass additives to Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics lowered the sintering temperature from 1250 to 900 °C. And Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics with 1 wt% MC and 1 wt% ZBS sintered at 900 °C for 2 h showed excellent dielectric properties: ?r = 53, Q × f = 14,600 GHz, τf = 6 ppm/°C. Moreover, it has a chemical compatibility with silver, which made it as a promising material for low temperature co-fired ceramics technology application.  相似文献   

12.
The nucleation and crystallization of MgO-B2O3-SiO2 (MBS) glass were studied by means of a non-isothermal, thermal analysis technique, X-ray diffraction and scanning electron microscopy. The temperature range of the nucleation and the temperature of the maximum nucleation rate for MBS glass were determined from the dependences of the inverse temperature at the DSC peak (1/Tp) and the maximum intensity of the exothermic DSC crystallization peak ((δT)p) on the nucleation temperature (Tn). For MBS glass the nucleation occurred at 600-750 °C, with the maximum nucleation rate at 700 °C, whereas the nucleation and crystal growth processes overlapped at 700 °C < T ≤ 750 °C. The analyses of the non-isothermal data for the bulk MBS glass using the most common models (Ozawa, Kissinger, modified Kissinger, Ozawa-Chen, etc.) revealed that the crystallization of Mg2B2O5 was three-dimensional bulk with a diffusion-controlled crystal growth rate, that n = m = 1.5 and that the activation energy for the crystallization was 410-440 kJ/mol.  相似文献   

13.
The X-ray diffraction patterns of (Na2/3Pb1/3)(Mn1/2Nb1/2)O3 ceramics were measured within 15–850 K temperature range. The anomaly in the thermal expansion temperature dependence occurred in 250–365 K range. The generalised Cole–Cole model was proposed to describe the measured effective electric permittivity influenced by high electric conduction and the coexistence of two contributions ?*(T,f) = ?*lattice + ?*carriers was considered. The analysis of the electric permittivity and conduction exhibited two relaxation processes. The electric conduction relaxation characteristic time values indicated the small polaron mechanism with τ0 ≈ 10−13 s occurring in 240–345 K range and the ionic mechanism with τ0 ≈ 10−11 s involved in the other relaxation occurring in the 320–510 K range. The ionic relaxation process was ascribed to a subsystem of defects, which was weakly interrelated to the anomaly in thermal expansion of the (Na2/3Pb1/3)(Mn1/2Nb1/2)O3 ceramics. The Gate model was proposed to describe the ionic relaxation mechanism.  相似文献   

14.
The microwave dielectric properties of (BaxMg1−x)(A0.05Ti0.95)TiO3 (A=Zr, Sn) ceramics were investigated with regard to substitution of Ba for Mg of A-site. The microwave dielectric properties were correlated with the Ba content. With an increase in Ba content from 0.01 to 0.1, the dielectric constant and the τf value increased, but the Q×f value decreased. The sintered (BaxMg1−x)(Zr0.05Ti0.95)TiO3 (called BxMZT) ceramics had a permittivity in the range of 19.1−20.6, quality factor from 180,000 to 25,000 GHz, and variation in temperature coefficient of resonant frequency from −35 to −39 ppm/°C with increasing composition x. For sintered (BaxMg1−x)(Sn0.05Ti0.95)TiO3 (called BxMST) ceramics, the dielectric constant increased from 19 to 20.5, Q×f value increased from 120,000 to 37,000 (GHz), and the τf value increased from −50 to −3.3 ppm/°C as the x increased from 0.01 to 0.1. When A=Sn and x=0.1, (Ba0.1Mg0.9)(Sn0.05Ti0.95)TiO3 ceramics exhibited dielectric constant of 20.5, Q×f value of 37,000 (GHz), and a near-zero τf value of −3.3 ppm/°C sintered at 1210 °C for 4 h.  相似文献   

15.
The potentiometric response of the Li+ ion-selective electrode based on the fast ion conductor Li3xLa2/3−xTiO3 (x = 0.10) membrane (named LLTO) as well as the impedance of the LLTO membrane/Li+ solution in either anhydrous or hydrated PC solvent have been carried out. A four-electrode configuration has been used for the investigation of the interfacial phenomenon. It has been shown that the LLTO membrane can be used to detect the Li+ activity in anhydrous solutions through a Li+ ion exchange mechanism. The potentiometric response shows a Nernstian behavior with a Li+ sensitivity of −72 mV/decade at 25 °C. This high sensitivity can be correlated to a localised hydroxylation of the oxide surface with the residual water present in the solution in combination to the Li+ exchange reaction. An apparent standard current density of 12 μA/cm2 and a charge-transfer coefficient of 0.29 have been determined. However, as water content in the electrolyte increases, the activity domain of the detection decreases to lead to the disappearance of the Li+ ion exchange mechanism in Li+ aqueous solution. This annihilation of the exchange process may be due to the predominant catalytic reaction of [Ti-O] with H2O and/or to the formation of a water layer on the oxide surface.  相似文献   

16.
The preparation and dielectric properties of 3ZnO·B2O3 ceramics were investigated. Dense 3ZnO·B2O3 ceramics were obtained as sintered in the temperature range from 950 to 1000 °C for 3 h. The X-ray diffraction showed that the obtained ceramics were of a monoclinic 3ZnO·B2O3 structure. The ceramic specimens fired at 955 °C for 1 h exhibited excellent microwave dielectric properties: ?r ∼ 6.9, Q × f ∼ 20,647 GHz (@6.35 GHz), and τf ∼ −80 ppm/°C. The dependences of relative density, ?r, and Q × f of ceramics sintered at 955 °C on sintering soaking time showed that they all reached their plateaus as the soaking time was up to 60 min. Meanwhile, 3ZnO·B2O3 ceramics had no reaction with silver during cofiring, indicating it is a potential candidate for low-temperature cofired ceramic (LTCC) substrate.  相似文献   

17.
Cation substituted bismuth vanadate possesses high oxygen ion conductivity at lower temperatures. The ionic conductivity of this material at 300 °C is 50–100 times more than any other solid electrolyte. Three phases (α, β, γ) are observed in the substituted compound; α and γ are low and high conducting phase, respectively. Samples of Bi4V2−xCuxO11−δ (x = 0–0.4) were prepared by solid-state reaction technique. Impedance spectroscopy measurements were carried out in the frequency range of 100 Hz to 100 kHz using gold sputtered cylindrical shaped pellets to obtain bulk ionic conductivities as a function of the substitution and temperature. The change of slopes observed in the Arrhenius plots is in agreement with the phase transitions for all the compositions. The highest ionic conductivity of the Cu-substituted compound was observed in Bi4V1.8Cu0.2O11−δ which is attributed to its lower activation energy. Microstructural studies indicated the stabilization of high temperature γ-phase at low temperature in those samples whose ionic conductivity observed was higher.  相似文献   

18.
FTIR spectroscopic investigations coupled with ionic conductivity and viscosity measurements on lithium imide (LiN(CF3SO2)2)-propylene carbonate (PC)-poly(methyl methacrylate) (PMMA) based liquid and gel electrolytes over a wide range of salt (0.025-3 M) and polymer (5-25 wt.%) concentration range furnish a novel insight into the ion-ion and ion-solvent-polymer interactions. Vibrational spectral data for LiN(CF3SO2)2-PC electrolytes reveal that the solvation of lithium ions manifests from Li+OC and Li+O (ring oxygens) interactions as the νs(CO), the ring breathing and the δ(CH) modes of the pentagonal solvent ring are strongly perturbed for all salt concentrations. The split of the ν(SO2) mode (that appears at 1355 cm−1 for the “free imide ion”) into two components at 1337 and 1359 cm−1 confirms the existence of contact ion-pairs possessing two different stable optimized geometries wherein the Li+ ion coordinates in a bidentate fashion in liquid and gel electrolytes of 3 M LiN(CF3SO2)2-PC strength. Perturbations observed for the νa(SNS) and νs(SNS) modes of the imide ion and the symmetric ring deformation mode of PC confirms the presence of ion-pairs in both 2 and 3 M electrolytes. Incorporation of even upto 25 wt.% of PMMA in a solution of LiN(CF3SO2)2-PC of 3 M strength results in an insignificant conductivity decline (as σ25>10−3 S cm−1) which is simultaneously accompanied by a massive increase in its macroscopic viscosity (as η25>108 cSt). Gels containing 25 wt.% of PMMA exhibit a complex pattern of Li+-PMMA interactions through the carbonyl oxygen of its ester group which is evidenced from the perturbations observed for the νs(CO) mode of PMMA. Ionic conductivity decline that occurs at salt concentrations ≥1.25 M LiN(CF3SO2)2-PC in both liquid and gel electrolytes, is therefore attributable to (i) ion-pairing phenomenon and (ii) an enhancement in the solution viscosity due to a high salt proportion.  相似文献   

19.
Members of the solid-solution series Ce1−xSrxPO4−δ (x = 0, 0.01, 0.02) with mixed protonic and electronic transport have been synthesized by a nitrate-decomposition method followed by sintering at 1450 °C. Impedance spectroscopy is employed to estimate the bulk electrical conductivity in wet (∼0.03 atm) and dry atmospheres of O2 and 10%H2:90%N2. Conductivity increases with dopant concentration (x), oxygen partial pressure (pO2) and water vapour partial pressure (pH2O) reaching ∼3.5 × 10−3 S cm−1 at 600 °C for x = 0.02 in wet O2. Activation energies (Ea) for the bulk conductivity of Ce0.98Sr0.02PO4−δ below 650 °C are 0.44 and 0.78 eV for wet oxidising and wet reducing conditions, respectively. A moderate but positive pO2+n power-law dependence (n < 1/10) of conductivity is exhibited in the pO2 range 10−2.5 to 10−1 atm, consistent with mixed ionic and p-type electronic transport. Thermogravimetric analysis indicates that the Sr-doped materials are stable in a CO2 atmosphere in the temperature range 25–1200 °C.  相似文献   

20.
Nb-doped Bi4Ti3O12-SrBi4Ti4O15 intergrowth ceramics have been prepared by modified oxalate route. XRD phase analysis confirmed the formation of single phase compound. Nb-doping does not affect the basic crystal structure of the intergrowth. SEM micrographs showed that the grain size of the ceramics decreases with Nb-doping. The temperature dependence of dielectric constant and losses was investigated in the temperature range 30–800 °C and frequency range 1 kHz–1 MHz. With Nb-doping, the Tc of the ferroelectrics reduces and peak permittivity increases. Doping also introduces small relaxor behavior in the ferroelectrics. The dc conductivity of the ceramics decreases with doping. The remnant polarization (Pr) of the intergrowth ferroelectrics is increased with Nb doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号