首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid polymer electrolytes (SPEs) synthesized by the sol-gel process and designated as di-ureasils have been prepared through the incorporation of lithium perchlorate, LiClO4, into the d-U(2000) organic-inorganic hybrid network. Electrolytes with lithium salt compositions of n (where n indicates the number of oxyethylene units per Li+ ion) between ∞ and 0.5 were characterized by conductivity measurements, cyclic voltammetry at a gold microelectrode, thermal analysis and Fourier transform Raman (FT-Raman) spectroscopy. The conductivity results obtained suggest that this system offers a quite significant improvement over previously characterized analogues doped with lithium triflate [S.C. Nunes, V. de Zea Bermudez, D. Ostrovskii, M.M. Silva, S. Barros, M.J. Smith, R.A. Sá Ferreira, L.D. Carlos, J. Rocha, E. Morales, J. Electrochem. Soc. 152 (2) (2005), A429]. “Free” perchlorate ions, detected in all the samples examined, are identified as the main charge carriers in the sample that yields the highest room temperature conductivity (n = 20). In the di-ureasils with n ≤ 10 ionic association is favoured and the ionic conductivity drops.  相似文献   

2.
The Li+ ion-exchange reaction of K+-type α-K0.14MnO1.93·nH2O containing different amounts of water molecules (n = 0-0.15) with a large (2 × 2) tunnel structure has been investigated in a LiNO3-LiCl molten salt at 300 °C. The Li+ ion-exchanged products were examined by chemical analysis, X-ray diffraction, and transmission electron microscopy measurements. The K+ ions and the hydrogens of the water molecules in the (2 × 2) tunnels of α-MnO2 were exchanged by Li+ ions in the molten salt, resulting in the Li+-type α-MnO2 containing different amounts of Li+ ions and lithium oxide (Li2O) in the (2 × 2) tunnels with maintaining the original hollandite structure.The electrochemical properties and structural variation with initial discharge and charge-discharge cycling of the Li+ ion-exchanged α-MnO2 samples have been investigated as insertion compounds in the search for new cathode materials for rechargeable lithium batteries. The Li+ ion-exchanged α-MnO2 samples provided higher capacities and higher Li+ ion diffusivity than the parent K+-type materials on initial discharge and charge-discharge cyclings, probably due to the structural stabilization with the existence of Li2O in the (2 × 2) tunnels.  相似文献   

3.
FTIR spectroscopic investigations coupled with ionic conductivity and viscosity measurements on lithium imide (LiN(CF3SO2)2)-propylene carbonate (PC)-poly(methyl methacrylate) (PMMA) based liquid and gel electrolytes over a wide range of salt (0.025-3 M) and polymer (5-25 wt.%) concentration range furnish a novel insight into the ion-ion and ion-solvent-polymer interactions. Vibrational spectral data for LiN(CF3SO2)2-PC electrolytes reveal that the solvation of lithium ions manifests from Li+OC and Li+O (ring oxygens) interactions as the νs(CO), the ring breathing and the δ(CH) modes of the pentagonal solvent ring are strongly perturbed for all salt concentrations. The split of the ν(SO2) mode (that appears at 1355 cm−1 for the “free imide ion”) into two components at 1337 and 1359 cm−1 confirms the existence of contact ion-pairs possessing two different stable optimized geometries wherein the Li+ ion coordinates in a bidentate fashion in liquid and gel electrolytes of 3 M LiN(CF3SO2)2-PC strength. Perturbations observed for the νa(SNS) and νs(SNS) modes of the imide ion and the symmetric ring deformation mode of PC confirms the presence of ion-pairs in both 2 and 3 M electrolytes. Incorporation of even upto 25 wt.% of PMMA in a solution of LiN(CF3SO2)2-PC of 3 M strength results in an insignificant conductivity decline (as σ25>10−3 S cm−1) which is simultaneously accompanied by a massive increase in its macroscopic viscosity (as η25>108 cSt). Gels containing 25 wt.% of PMMA exhibit a complex pattern of Li+-PMMA interactions through the carbonyl oxygen of its ester group which is evidenced from the perturbations observed for the νs(CO) mode of PMMA. Ionic conductivity decline that occurs at salt concentrations ≥1.25 M LiN(CF3SO2)2-PC in both liquid and gel electrolytes, is therefore attributable to (i) ion-pairing phenomenon and (ii) an enhancement in the solution viscosity due to a high salt proportion.  相似文献   

4.
The Ca3−xB2O6:xDy3+ (0.0 ≤ x ≤ 0.105) and Ca2.95−yDy0.05B2O6:yLi+ (0 ≤ y ≤ 0.34) phosphors were synthesized at 1100 °C in air by solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation (PLE) and photoluminescence (PL) spectra. The PLE spectra show the excitation peaks from 300 to 400 nm is due to the 4f-4f transitions of Dy3+. This mercury-free excitation is useful for solid state lighting and light-emitting diodes (LEDs). The emission of Dy3+ ions upon 350 nm excitation is observed at 480 nm (blue) due to the 4F9/2 → 6H15/2 transitions, 575 nm (yellow) due to 4F9/2 → 6H13/2 transitions and a weak 660 nm (red) due to 4F9/2 → 6H11/2 emissions, respectively. The optimal PL intensity of the Ca3−xB2O6:xDy3+ phosphors is found to be x = 0.05. Moreover, the PL results from Ca2.95−yDy0.05B2O6:yLi+ phosphors show that Dy3+ emissions can be enhanced with the increasing codopant Li+ content till y = 0.22. By simulation of white light, the CIE of the investigated phosphors can be tuned by varying the content of Li+ ions, and the optimal CIE value (0.300, 0.298) is realized when the content of Li+ ions is y = 0.22. All the results imply that the Ca2.95−yDy0.05B2O6:yLi+ phosphors could be potentially used as white LEDs.  相似文献   

5.
E. Ríos 《Electrochimica acta》2005,50(13):2705-2711
We conducted a study on the electroreduction of O2 in alkaline solution at room temperature on pure thin oxide electrodes of composition MnxCo3−xO4 (0 ≤ x ≤ 1) using the double channel electrode flow cell (DCEFC). The oxides were prepared at 150 °C and deposited by spray pyrolysis onto titanium substrates. The oxygen reduction reaction (orr) occurs through “interactive” and “parallel” pathways, and the ratio of O2 molecules reduced to OH ions with respect to those reduced to HO2 ions depends on the oxide stoichiometry and on the applied overpotential. The formation of HO2 increases when the manganese concentration increases. The results obtained for the orr show that the number of electrons transferred per O2 molecule decreases from 3 to 2 and the ratio k1/k2 (the rate constants for direct reduction to OH and indirect reduction to HO2) increases, respectively, in the overpotential studied range (−0.05 to −0.6 V). The Mn3+ ions placed in the B-sites of the spinel structure seem to be the active centres, where hydrogen peroxide is formed.  相似文献   

6.
Jianquan Wang  Mitsuru Satoh 《Polymer》2009,50(15):3680-13613
A series of poly(vinyl alcohol)-trimellitate (PVA-T) polymers with different esterification degrees (ED: 82, 61, and 32 mol%) were prepared through the esterification of PVA and trimellitic anhydride (TA). Solubilities of these polymers and the swelling properties of PVA-T hydrogels, which were prepared by crosslinking with ethylene glycol diglycidyl ether (EGDGE), were investigated in various salt solutions comprising of SO42−, Cl, SCN and Li+, Na+, K+, Cs+. The PVA-T polymers proved to have larger solubilities in salt solutions (1 M) than in pure water, and the ionic “salting-in” effect was significant in order of SO42− > SCN > Cl for anions, and Li+ > Na+ > K+ > Cs+ for cations, regardless of their ED values. The PVA-T hydrogels also showed corresponding swelling properties; they significantly swelled in sulfate solutions of medium concentration (0.1-1 M), while in other salt solutions no appreciable swelling occurred. The marked salting-in effects exerted by sulfate anion, which is otherwise a typical “salting-out” agent, means that PVA-T polymers have an “anti-Hofmeister Series” (anti-HS) property. This is naturally ascribed to the trimellitic acid group because the degree of swelling in sulfate solutions was more significant for PVA-T with higher ED values; the combination of π-electron system and acidic protons seems to be essential to endow polymers with the anti-HS property.  相似文献   

7.
Abnormal “polymer-in-salt” conduction behavior is observed in a solid electrolyte composed of lithium iodide (LiI) and 3-hydroxypropionitrile (HPN). Based on comprehensive investigations by X-ray diffraction (XRD) and Raman and infrared spectroscopy, this abnormal conduction behavior is attributed to the formation of new ionic associates [Lim+In]?NC (m > n) and the reinforced hydrogen bonding of I?HO in the electrolyte at high LiI concentrations.  相似文献   

8.
New functionalized ionic liquids (ILs), comprised of multi-methoxyethyl substituted quaternary ammonium cations (i.e. [N(CH2CH2OCH3)4−n(R)n]+; n = 1, R = CH3OCH2CH2; n = 1, R = CH3, CH2CH3; n = 2, R = CH3CH2), and two representative perfluorinated sulfonimide anions (i.e. bis(fluorosulfonyl)imide (FSI) and bis(trifluoromethanesulfonyl)imide (TFSI)), were prepared. Their fundamental properties, including phase transition, thermal stability, viscosity, density, specific conductivity and electrochemical window, were extensively characterized. These multi-ether functionalized ionic liquids exhibit good capability of dissolving lithium salts. Their binary electrolytes containing high concentration of the corresponding lithium salt ([Li+] >1.6 mol kg−1) show Li+ ion transference number (tLi+) as high as 0.6-0.7. Their electrochemical stability allows Li deposition/stripping realized at room temperature. The desired properties of these multi-ether functionalized ionic liquids make them potential electrolytes for Li (or Li-ion) batteries.  相似文献   

9.
Br-doped Li4Ti5O12 in the form of Li4Ti5O12−xBrx (0 ≤ x ≤ 0.3) compounds were successfully synthesized via solid state reaction. The structure and electrochemical properties of the spinel Li4Ti5O12−xBrx (0 ≤ x ≤ 0.3) materials were investigated. The Li4Ti5O12−xBrx (x = 0.2) presents the best discharge capacity among all the samples, and shows better reversibility and higher cyclic stability compared with pristine Li4Ti5O12, especially at high current rates. When the discharge rate was 0.5 C, the Li4Ti5O12−xBrx (x = 0.2) sample presented the excellent discharge capacity of 172 mAh g−1, which was very close to its theoretical capacity (175 mAh g−1), while that of the pristine Li4Ti5O12 was 123.2 mAh g−1 only.  相似文献   

10.
X.H. Rui 《Electrochimica acta》2010,55(7):2384-25518
The chemical diffusion coefficients of lithium ions (DLi+) in Li3V2(PO4)3 between 3.0 and 4.8 V are systematically determined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT). The DLi+ values are found to be dependent on the voltage state of charge and discharge. Based on the results from all the three techniques, the true diffusion coefficients measured in single-phase region are in the range of 10−9 to 10−10 cm2 s−1. Its apparent diffusion coefficients measured in two-phase regions by CV and GITT range from 10−10 to 10−11 cm2 s−1 and 10−8 to 10−13 cm2 s−1, respectively, depending on the potentials. By the GITT, the DLi+ varies non-linearly in a “W” shape with the charge-discharge voltage, which is ascribed to the strong interactions of Li+ with surrounding ions. Finally, the chemical diffusion coefficients of lithium ions measured by CV, EIS and GITT are compared to each other.  相似文献   

11.
The amphiphilic gels based on hydrophobically modified dimethylaminoethyl methacrylate with different 1-bromoalkanes (1-CnH2n+1Br, n = 2, 4, 6, 8, 12) were synthesized by radiation-induced polymerization and crosslinking. The length of alkyl side chains had significant influence on the swelling behavior of the resulting gels. The swelling degree of the gels decreased with the increase of side chain length, and the gel hardly swelled when n = 12. The effect of temperature and ionic strength on the swelling behavior of the resulting gels revealed that (1) the gels with longer side chains (n ≥ 8) had upper critical solution temperature, while other gels were not thermo-sensitive. (2) Antipolyelectrolyte effect was observed when immersing the gels (n ≥ 8) in NaCl solutions in certain concentration range. The dramatic difference in swelling behavior was attributed to the different gel structures. The gels with short side chains (n ≤ 6) had cellular structure of normal polyelectrolyte gels. The gels (n ≥ 8) had an aggregation gel structure caused by the hydrophobic interaction among alkyl groups and the formation of ion-cluster between tetra-alkyl ammonium cation and Br, which had been analyzed with the aid of SEM, Br-selective electrode and fluorescence molecular probe.  相似文献   

12.
Comb-shaped single ion conductors have been synthesized by (1) sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li+ salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE8-co-E3SO3Li); (2) sulfonation of chloride end groups grafted on to prepolymers of polyacrylate ethers (PAE8-g-EnSO3Li, n = 2, 3). The highest conductivity at 25 °C of 2.0 × 10−7 S cm−1 was obtained for the PAE8-co-E3SO3Li with a salt concentration of EO/Li = 40. The conductivity of PAE8-g-E3SO3Li is lower than that of PAE8-co-E3SO3Li at similar salt concentrations, which is related to the incomplete sulfonation of the grafted polymer that leads to a lower concentration of Li+. The addition of 50 wt.% of plasticizer, PC/EMC (1/1, v/v), to PAE8-g-E2SO3Li increases the ambient conductivity by three orders of magnitude, which is due to the increased ion mobility in a micro-liquid environment and an increase concentration of free ions as a result of the higher dielectric constant of the solvent. A symmetrical Li/Li cell with an electrolyte membrane consisting of 75 wt.% PC/EMC (1/1, v/v) was cycled at a current density of 100 μA cm−2 at 85 °C. The cycling profile showed no concentration polarization after a break-in period during the first few cycles, which was apparently due to reaction of the solvent at the lithium metal surface that reacted with lithium metal to form a stable SEI layer.  相似文献   

13.
Co-doped Li3V2−xCox(PO4)3/C (x = 0.00, 0.03, 0.05, 0.10, 0.13 or 0.15) compounds were prepared via a solid-state reaction. The Rietveld refinement results indicated that single-phase Li3V2−xCox(PO4)3/C (0 ≤ x ≤ 0.15) with a monoclinic structure was obtained. The X-ray photoelectron spectroscopy (XPS) analysis revealed that the cobalt is present in the +2 oxidation state in Li3V2−xCox(PO4)3. XPS studies also revealed that V4+ and V3+ ions were present in the Co2+-doped system. The initial specific capacity decreased as the Co-doping content increased, increasing monotonically with Co content for x > 0.10. Differential capacity curves of Li3V2−xCox(PO4)3/C compounds showed that the voltage peaks associated with the extraction of three Li+ ions shifted to higher voltages with an increase in Co content, and when the Co2+-doping content reached 0.15, the peak positions returned to those of the unsubstituted Li3V2(PO4)3 phase. For the Li3V1.85Co0.15(PO4)3/C compound, the initial capacity was 163.3 mAh/g (109.4% of the initial capacity of the undoped Li3V2(PO4)3) and 73.4% capacity retention was observed after 50 cycles at a 0.1 C charge/discharge rate. The doping of Co2+into V sites should be favorable for the structural stability of Li3V2−xCox(PO4)3/C compounds and so moderate the volume changes (expansion/contraction) seen during the reversible Li+ extraction/insertion, thus resulting in the improvement of cell cycling ability.  相似文献   

14.
In this research, we studied the first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Properties, such as valence state of the transition metals and crystallographic features, were analyzed by X-ray absorption spectroscopy and X-ray and neutron diffractions. Especially, two plateaus observed around 3.75 and 4.54 V were investigated by ex situ X-ray absorption spectroscopy. XANES studies showed that the oxidation states of transition metals in Li[Ni1/3Co1/3Mn1/3]O2 are mostly Ni2+, Co3+ and Mn4+. Based on neutron diffraction Rietveld analysis, there is about 6% of all nickel divalent (Ni2+) ions mixed with lithium ions (cation mixing). Meanwhile, it was found that the oxidation reaction of Ni2+/Ni4+ is related to the lower plateau around 3.75 V, but that of Co3+/Co4+ seems to occur entire range of x in Li1−x[Ni1/3Co1/3Mn1/3]O2. Small volume change during cycling was attributed to the opposite variation of lattice parameter “c” and “a” with charging-discharging.  相似文献   

15.
Organoboron-based anion trapping polymer electrolytes were synthesized through hydroboration or dehydrocoupling reaction between poly(propylene oxide) (PPO) oligomer (Mn = 400, 1200, 2000 and 4000) and 9-borabicyclo[3.3.1]nonane (9-BBN). Obtained oligomers were added various lithium salts (LiN(CF3SO2)2, LiSO3CF3, LiCO2CF3 or LiBr) to analyze the ionic conductivity and lithium ion transference number (tLi+). The ionic conductivity of the oligomer in the presence of LiN(CF3SO2)2 showed higher ionic conductivity than other systems, however, the tLi+ was less than 0.3. When LiSO3CF3 or LiCO2CF3, was added high tLi+ over 0.6 was obtained. Such difference in tLi+ can be explained by HSAB principle. Since boron is a hard acid, soft (CF3SO2)2N anion can not be trapped effectively. High ionic conductivity of 1.3 × 10−6 S cm−1 and high tLi+ of 0.73 was obtained when PPO chain length was 2000. These values of facilely prepared polymer electrolytes are comparable to those of the PPOs having covalently bonded salt moieties on the chain ends.  相似文献   

16.
New lithium nickel nitrides Li3−2xNixN (0.20 ≤ x ≤ 0.60) have been prepared and investigated as negative electrode in the 0.85/0.02 V potential window. These materials are prepared from a Ni/Li3N mixture at 700 °C under a nitrogen flow. Their structural characteristics as well as their electrochemical behaviour are investigated as a function of the nickel content. For the first time are reported here the electrochemical properties of a lithium intercalation compound based on a layered nitride structure. The Li3−2xNixN compounds can be reversibly reduced and oxidized around 0.5 V versus Li/Li+ leading to specific capacities in the range 120-160 mAh/g depending on the nickel content and the C rate. Due to a large number of lithium vacancies, the structural stability provides an excellent capacity retention of the specific capacity upon cycling.  相似文献   

17.
In this study, we prepare a kind of solid polymer electrolyte (SPE) based on N-ethyl-N′-methyl imidazolium tetrafluoroborate (EMIBF4), LiBF4 and poly(vinylidene difluoride-co-hexafluoropropylene) [P(VdF-HFP)] copolymer. The resultant SPE displays high thermal stability above 300 °C and high room temperature ionic conductivity near to 10−3 S cm−1. Its electrochemical properties are improved with incorporation of a zwitterionic salt 1-(1-methyl-3-imidazolium)propane-3-sulfonate (MIm3S). When the SPE contains 1.0 wt% of the MIm3S, it has a high ionic conductivity of 1.57 × 10−3 S cm−1 at room temperature, the maximum lithium ions transference number of 0.36 and the minimum apparent activation energy for ions transportation of 30.9 kJ mol−1. The charge-discharge performance of a Li4Ti5O12/SPE/LiCoO2 cell indicates the potential application of the as-prepared SPE in lithium ion batteries.  相似文献   

18.
2-Aminothiazole covalently attached to a silica gel surface was prepared in order to obtain an adsorbent for Hg(II) ions having the following characteristics: good sorption capacity, chemical stability under conditions of use, and, especially, high selectivity. The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2-aminothiazole (SIAMT-CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range −0.2 to +0.6 V versus Ag/AgCl (0.02 mol L−1 KNO3; v=20mVs−1) show two peaks one at about 0.1 V and other at 0.205 V. The anodic wave peak at 0.205 V is well defined and does not change during the cycles and it was therefore further investigated for analytical purposes using differential pulse anodic stripping voltammetry in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, “cleaning” solution, possible interferences and other variables. The precision for six determinations (n = 6) of 0.02 and 0.20 mg L−1 Hg(II) was 4.1 and 3.5% (relative standard deviation), respectively. The detection limit was estimated as 0.10 μg L−1 mercury(II) by means of 3:1 current-to-noise ratio in connection with the optimization of the various parameters involved and using the highest-possible analyser sensitivity.  相似文献   

19.
Ionically conducting materials based on a poly(?-caprolactone) (PCL)/siloxane organic/inorganic host framework doped with magnesium triflate (Mg(CF3SO3)2) were synthesized by the sol-gel process. In this matrix short PCL chains are covalently bonded to the siliceous network via urethane linkages. In this study the salt content of samples was identified using the conventional notation n, where n indicates the number of (C(O)(CH2)5O) PCL repeat units per Mg2+ ion. Xerogels with compositions ranging from n = ∞ to 1 were prepared. The only composition studied that was not entirely amorphous was that prepared with n = 1. Xerogels with n ≥ 7 are thermally stable up to at least 200 °C. The composition with the highest conductivity of the series is that with n = 34 (5.9 × 10−9 and 9.8 × 10−7 S cm−1 at 24 and 104 °C, respectively).  相似文献   

20.
The aim of this work was to predict energy equilibrium values in a bench-scale fluidized bed (FB: 105 × 200 mm), using a thermal breakthrough analysis (TBA). For this purpose, a simple “unsteady state” energy balance was proposed by harnessing dynamic model approach on the basis of heat exchange between the bed and the gas. To investigate thermal behavior of the bed, low temperature runs at different flow rates (5.2 ≤ Q0, m3 h1 ≤ 7.4) and heating rates (97 ≤ q, kJ h1 ≤ 765) were carried out. FB was heated by means of an electrical heater (10 × 50 mm) horizontally immersed into the bed particles for heating period and then the power input was terminated for cooling period. The bed temperatures (TB) were continuously measured for obtaining thermal breakthrough curves for all periods. Temperature-time data were used for extracting bed-to-gas heat transfer film coefficients (hBG) from linear forms of proposed model. The model was also employed for calculating amounts of shared energies by fluidized bed phases (qy − qx). A good agreement between experimental values and model values of TB was found. The results were thus confirmed by proposed model. The latter may be successfully used to predict energy equilibrium data for e.g. drying or combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号