共查询到20条相似文献,搜索用时 15 毫秒
1.
Composite coatings Ni/Al2O3 were electrochemically deposited from a Watts bath. Al2O3 powder with particle diameter below 1 μm was codeposited with the metal. The obtained Ni/Al2O3 coatings contained 5-6% by weight of corundum. The structure of the coatings was examined by scanning electron microscopy (SEM). It has been found that the codeposition of Al2O3 particles with nickel disturbs the nickel coating's regular surface structure, increasing its microcrystallinity and surface roughness. DC and AC electrochemical tests were carried out on such coatings in a 0.5 M solution of Na2SO4 in order to evaluate their corrosion resistance. The potentiodynamic tests showed that the corrosion resistance of composite coating Ni/Al2O3 is better than that of the standard nickel coating. After 14 days of exposure the nickel coating corrodes three times faster than the Ni/Al2O3 coating. The electrochemical behaviour of the coatings in the corrosive solution was investigated by electrochemical impedance spectroscopy (EIS). An equivalent circuit diagram consisting of two RC electric circuits: one for electrode, nickel corrosion processes and the other for processes causing coating surface blockage, were adopted for the analysis of the impedance spectra. The changes in the charge transfer resistance determined from the impedance measurements are comparable with the changes in corrosion resistance determined from potentiodynamic measurements. 相似文献
2.
S. Sathiyanarayanan 《Electrochimica acta》2007,52(5):2068-2074
Organic coating strategies for corrosion protection with inherently conducting polymers have become important because of restriction on the use of heavy metals and chromates in coatings due to their environmental problems. This work presents the synthesis of polyaniline-TiO2 composites (PTC) and the corrosion protection behaviour of PTC containing coating on steel. PTC was prepared by chemical oxidation of aniline and TiO2 by ammonium persulfate in phosphoric acid medium. The PTC was characterized by FTIR, XRD and SEM techniques. Suitable coating with PTC was formed on steel using acrylic resin. Using electrochemical impedance spectroscopy, the PTC containing coating's behaviour in 3% NaCl immersion test and salt spray test has been found out. Results indicate that the coating containing PTC is able to maintain the potential of steel in passive region due to its redox property. The resistance of the coating containing PTC was more than 107 Ω cm2 in 3% NaCl solution after 60 days and 109 Ω cm2 in the salt spray test of 35 days. But the resistance of the TiO2 containing coating was found to be less than 104 Ω cm2 in both the cases. The high performance of PTC containing coating is attributed to the passivation of steel by polyaniline. 相似文献
3.
The Fe2O3/Al2O3 catalyst was studied to selectively synthesize mixed alcohols from syngas in a continuously stirred slurry reactor with the oxygenated solvent Polyethylene Glycol-400 (PEG-400). The selectivity of mixed alcohols in the products reached as high as 95 wt.% and the C2+ alcohols (mainly ethanol) was more than 40 wt.% in the total alcohol products at the reaction conditions of 250 °C, 3.0 MPa, H2/CO = 2 and space velocity = 360 ml/gcat h. The hydrogen temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) measurements of the catalyst confirmed that the FeO phase was responsible for the high selectivity to mixed alcohols in the process. And the oxygenated solvent PEG-400 was also necessary for the selective synthesis of mixed alcohols in the reaction system. 相似文献
4.
B. Fernández J.M. AlmanzaJ.L. Rodríguez D.A. CortesJ.C. Escobedo E.J. Gutiérrez 《Ceramics International》2011,37(8):2973-2979
The effects of V2O5, NiO, Fe2O3 and vanadium slag on the corrosion of Al2O3 and MgAl2O4 have been investigated. The specimens of Al2O3 and MgAl2O4 with the respective oxides above mentioned were heated at 10 °C/min from room temperature up to three different temperatures: 1400, 1450 and 1500 °C. The corrosion mechanisms of each system were followed by XRD and SEM analyses. The results obtained showed that Al2O3 was less affected by the studied oxides than MgAl2O4. Alumina was only attacked by NiO forming NiAl2O4 spinel, while the MgAl2O4 spinel was attacked by V2O5 forming MgV2O6. It was also observed that Fe2O3 and Mg, Ni, V and Fe present in the vanadium slag diffused into Al2O3. On the other hand, the Fe2O3 and Ca, S, Si, Na, Mg, V and Fe diffused into the MgAl2O4 structure. Finally, the results obtained were compared with those predicted by the FactSage software. 相似文献
5.
Manufacturing of enamels and frits has undergone dramatic changes since the 1980s. This has required significant efforts in research and development. Typical compositions of frits for ceramic tiles are silica-based with fluxing agents; some of the components are highly corrosive. Improvements in the production of frits would imply the selection of the most adequate refractories as a function of the chemical composition of the considered frit and the fabrication procedure.The refractories currently used in frit furnaces are Al2O3-ZrO2-SiO2 (AZS) fused cast materials and Cr2O3-based materials. In this work, results on dynamic corrosion studies of AZS and Cr2O3-based materials by two ZnO-containing frits are described. Experiments have been performed using the “Merry Go Round” test at ≅1500 °C. Macroscopic results are analysed in terms of the remaining volume after the tests, as usually done in the glass industry. The significance and limits of such an approach are discussed. 相似文献
6.
In this work results on dynamic corrosion studies of fused cast Al2O3-SiO2-ZrO2 and isostatically pressed and sintered Cr2O3-based refractories by two crystalline (transparent) frits are described. Experiments have been performed using the “Merry Go Round” test at ≅1500 °C.Microstructural and mineralogical analyses of selected areas from the corroded regions of the studied refractories were performed by reflected light optical microscopy and scanning electron microscopy with analysis by X-ray dispersive energy.Significant differences between the corrosion mechanisms acting in the two types of materials were found. In the fused cast Al2O3-SiO2-ZrO2 specimens corrosion took place by the dissolution of alumina and zirconia in the frit and in the glass formed by the reaction between the frit and the refractory. In the Cr2O3-based materials the corrosion process was controlled by the capillar penetration of the molten frit through the open pores. The reaction between the ZnO from the frits and Cr2O3 led to the formation of spinel (ZnCr2O4), a high-melting point bonding phase that retarded the frit penetration. Results are discussed using the relevant phase equilibrium diagrams. 相似文献
7.
Zhaoyue Liu Kai Pan Meijia Wang Jinghong Li Yubai Bai Tiejin Li 《Electrochimica acta》2005,50(13):2583-2589
A novel Al2O3-coated SnO2/TiO2 composite electrode has been applied to the dye-sensitized solar cell. In such an electrode, two kinds of energy barriers (SnO2/TiO2 and TiO2/Al2O3) were designed to suppress the recombination processes of the photo-generated electrons and holes. After the SnO2 was modified by colloid TiO2, the photoelectric conversion efficiency of the SnO2/TiO2 composite cell increased to 2.08% by a factor of 2.8 comparing with that of the SnO2 cell. The Al2O3 layer on the SnO2/TiO2 composite electrode further suppressed the generation of the dark current, resulting in 37% improvement in device performance comparing with the SnO2/TiO2 cell. 相似文献
8.
The aim of this work was studying the effects of addition of Al2O3 nanoparticles on the anticorrosion performance of an epoxy/polyamide coating applied on the AA-1050 metal substrate. For this purpose, the epoxy nanocomposites were prepared using 1, 2.5 and 3.5 (w/w) pre-dispersed surface modified Al2O3 nanoparticles. Field-emission electron microscope (FE-SEM) and ultraviolet–visible (UV–Vis) techniques were utilized in order to evaluate the nanoparticles dispersion in the epoxy coating matrix. The anticorrosion performance of the nanocomposites was studied by electrochemical impedance spectroscopy (EIS) (in 3.5 wt% NaCl solution for 135 days immersion) and salt spray test for 1000 h. The coating resistance against hydrolytic degradation was also studied by optical microscope and Fourier-transform infrared spectroscopy (FTIR). Results obtained from FE-SEM micrographs and UV–visible spectra showed that the nanoparticles dispersed in the coating matrix uniformly with particle size less than 100 nm even at high loadings. Results revealed that nano-Al2O3 particles could significantly improve the corrosion resistance of the epoxy coating. Nanoparticles reduced water permeability of the coating and improved its resistance against hydrolytic degradation. 相似文献
9.
Hot corrosion is one of the main destructive factors in thermal barrier coatings (TBCs) which come as a result of molten salt effect on the coating–gas interface. Hot corrosion behavior of three types of plasma sprayed TBCs was evaluated: usual CSZ, layer composite of CSZ/Micro Al2O3 and layer composite of CSZ/Nano Al2O3 in which Al2O3 was as a topcoat on CSZ layer. Hot corrosion studies of plasma sprayed thermal barrier coatings (TBCs) were conducted in 45 wt% Na2SO4+55 wt% V2O5 molten salt at 1050 °C for 40 h. The graded microstructure of the coatings was examined using scanning electron microscope (SEM) and X-ray diffractometer (XRD) before and after hot corrosion test. The results showed that no damage and hot corrosion products was found on the surface of CSZ/Nano Al2O3 coating and monoclinic ZrO2 fraction was lower in CSZ/Micro Al2O3 coating in comparison with usual CSZ. reaction of molten salts with stabilizers of zirconia (Y2O3 and CeO2) that accompanied by formation of monoclinic zirconia, irregular shape crystals of YVO4, CeVO4 and semi-cubic crystals of CeO2 as hot corrosion products, caused the degradation of CSZ coating in usual CSZ and CSZ/Micro Al2O3 coating. 相似文献
10.
Sepideh ArastehAmir Maghsoudipour Masoud AlizadehAli Nemati 《Ceramics International》2011,37(8):3451-3455
Bi2O3 compositions were prepared to investigate the effect of rare earth metal oxides as co-dopants on phase stability of bismuth oxide. Compositions containing 9-14 mol% of Y2O3 and Er2O3 were synthesized by solid state reaction. The structural characterization was carried out using X-ray powder diffraction. The XRD results show that the samples containing 12 and 14 mol% total dopants had cubic structure, whereas the samples with lower dopant concentrations were tetragonal. Comparing the lattice parameters of the cubic phases of (Bi2O3)0.88(Y2O3)0.06(Er2O3)0.06 and (Bi2O3)0.86(Y2O3)0.07(Er2O3)0.07 revealed that lattice parameter decreases by increasing the dopant concentration. The XRD pattern and the powder density results indicated the formation of solid solution in the studied systems. After annealing samples with cubic phase at 600 °C for various periods of time, phase transformation to tetragonal and rhombohedral occurs. 相似文献
11.
In this work we present the study of the interaction between NIR pulsed laser and Al2O3-ZrO2 (3%Y2O3) eutectic composite. The effect produced by modifying the reference position as well as the working conditions and laser beam features has been studied when the samples are processed by means of pulse bursts.The samples were obtained by the laser floating zone technique using a CO2 laser system. The laser machining was carried out with a Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-widths in the nanosecond range.Geometric dimensions, i.e. ablated depth, machined width and removed volume as well as ablation yield of the resulting holes have been studied. We have described and discussed the morphology, composition and microstructure of the processed samples. 相似文献
12.
K. J. W. Atkinson Robin W. Grimes Mark R. Levy Zoe L. Coull Tim English 《Journal of the European Ceramic Society》2003,23(16):3059-3070
Atomic scale computer simulation was used to predict the mechanisms and energies associated with the accommodation of aliovalent and isovalent dopants in three host oxides with the corundum structure. Here we consider a much more extensive range of dopant ions than has previously been the case. This enables a rigorous comparison of calculated mechanism energetics. From this we predict that divalent ions are charge compensated by oxygen vacancies and tetravalent ions by cation vacancies over the full range of dopant radii. When defect associations are included in the model these conclusions remain valid. At equilibrium, defects resulting from extrinsic dopant solution dominate intrinsic processes, except for the largest dopant cations. Solution reaction energies increase markedly with increasing dopant radius. The behaviour of cluster binding energies is more complex. 相似文献
13.
The effect of cerium oxides film, formed electrochemically on OC404 stainless steel (SS), upon the corrosion behavior of steel in 0.1N H2SO4 was investigated. The modification of the steel surface by deposition of cerium oxides films was found to improve the steel corrosion resistance. A linear dependence between the stationary corrosion potential of the cerium oxides/SS system and the cerium concentration in the oxide film was established. The shift of the corrosion potential in the positive direction was found to depend on the proceeding of a depolarizing cathode reaction of CeO2 reduction (instead of the hydrogen depolarizing reaction) occurring on the cathodic zones, formed by this oxide. On the basis of XPS analyses of the samples, subjected to real corrosion under the conditions of self-dissolution, a pronounced drop of the surface concentration of CeO2 was established. This is a proof of the occurrence of an effective cathode process of CeO2 reduction to Ce2O3, which was then dissolved in H2SO4. Data were obtained (XPS) on the composition and structure of the surface film (SEM) after electrodeposition of cerium oxides and after corrosion in the sulfuric acid medium under consideration for time intervals ranging from 50 up to 1000 h. The ICP-AES studies acquired data on the quantity of dissolved elements, forming the passive layer. After exposure to the corrosive medium, the deposited layer showed enrichment in oxides of chromium and aluminium. The passive film on stainless steel, modified in this way, proved to be more stable to the effect of aggressive sulfuric acid medium, compared to the case of natural passive film. 相似文献
14.
S.M. Lakiza Ja.S. TyschenkoL.M. Lopato 《Journal of the European Ceramic Society》2011,31(7):1285-1291
The phase diagram of the Al2O3-HfO2-Y2O3 system was first constructed in the temperature range 1200-2800 °C. The phase transformations in the system are completed in eutectic reactions. No ternary compounds or regions of appreciable solid solution were found in the components or binaries in this system. Four new ternary and three new quasibinary eutectics were found. The minimum melting temperature is 1755 °C and it corresponds to the ternary eutectic Al2O3 + HfO2 + Y3Al5O12. The solidus surface projection, the schematic of the alloy crystallization path and the vertical sections present the complete phase diagram of the Al2O3-HfO2-Y2O3 system. 相似文献
15.
Xu Li Guanzhong Lu Yanglong Guo Yun Guo Yanqin Wang Zhigang Zhang Xiaohui Liu Yunsong Wang 《Catalysis communications》2007,8(12):1969-1972
A novel solid superbase catalyst of Eu2O3/Al2O3 was prepared and its basic strength reached 26.5 measured by indicators according to Hammett scale. The catalytic activity of Eu2O3/Al2O3 was evaluated for the transesterification of soybean oil with methanol to biodiesel in the fixed bed reactor and under atmospheric pressure. The results show that Eu2O3/Al2O3 is an excellent catalyst for the transesterification of soybean oil, and the conversion of soybean oil can reach 63.2% at 70 °C for 8 h. 相似文献
16.
C.C. TambelliA.C. Bloise A.V. RosárioE.C. Pereira C.J. MagonJ.P. Donoso 《Electrochimica acta》2002,47(11):1677-1682
The behaviour of PEO8LiClO4 with different quantities of α-Al2O3 or γ-Al2O3 was investigated using DSC, AC conductivity and 7Li NMR experiments. DSC results showed that the presence of the filler does not change the glass transition temperature of the electrolyte but, on the other hand, modifies the quantity of its crystalline phase. From the AC impedance measurements, it was observed that the sample with the highest conductivity at room temperature is PEO8LiClO4 5.3 wt.% α-Al2O3. The change in the quantity of crystalline phase cannot alone explain the conductivity data, and it is suggested that the space charge contribution in the interphase of the filler particles and the polymeric chains influences the behaviour of the samples. The 7Li NMR results showed that line width narrowing begins at temperatures close to Tg. From the hydrogen decoupling experiments it was possible to estimate the LiH average distances as 2.7 Å. The LiLi distance was calculated as being between 2.6 and 3.5 Å depending on the number of near neighbours lithium nuclei used in the model. 相似文献
17.
Fine particles of anatase were suspended in solutions of ammonium alum with Al2O3/TiO2 molar ratios from 0.1:1 to 7:1. By spray drying the suspensions and calcining the spray-dried powders, Al2O3-TiO2 composite particles were obtained. The results show that after the spray drying, coatings of ammomium alum are formed on the surface of the anatase particles, leading to composite precursor powders (CCPs) with larger particle sizes. Upon calcining the CCPs, ammomium alum pyrolyzes to amorphous Al2O3 and anatase transforms into rutile. Both are mainly responsible for the observed particle size reductions as well as the densification of each composite particle. The in-situ formed α-Al2O3 and rutile may have higher reactivities, forming aluminum titanate at 1150 °C, about 130 °C lower than the theoretical temperature for the formation of Al2TiO5 by solid reaction. The reaction between α-Al2O3 and rutile starts from the interface between the anatase and the alum coating and mainly takes place in the single particles formed by spray drying. The molar ratio of Al2O3 to TiO2 influences the final crystalline phases in the composite powders, but not stoichiometrically. 相似文献
18.
J. Godnjavec J. Zabret B. Znoj S. Skale N. Veronovski P. Venturini 《Progress in Organic Coatings》2014
Surface modification and characterization of TiO2 nanoparticles as an additive in a polyacrylic clear coating were investigated. For the improvement of nanoparticles dispersion and the decreasing of photocatalytic activity, the surface of nanoparticles was modified with binary SiO2/Al2O3. The surface treatment of TiO2 nanoparticles was characterized with FTIR. Microstructural analysis was done by AFM. The size, particle size distribution and zeta potential of TiO2 nanoparticles in water dispersion was measured by DLS method. For the evaluation of particle size and the stability of nanoparticles in water dispersions with higher solid content the electroacoustic spectroscopy was made. To determine the applicability and evaluate the transmittance of the nano-TiO2 composite coatings UV–VIS spectroscopy in the wavelength range of 200–800 nm was employed. The results showed that surface treatment of TiO2 nanoparticles with SiO2/Al2O3 improves nanoparticles dispersion and UV protection of the clear polyacrylic composite coating. 相似文献
19.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made. 相似文献
20.
S?awomir Ku? 《Fuel》2003,82(11):1331-1338
The catalytic performance in oxidative coupling of methane (OCM) of unmodified pure La2O3, Nd2O3, ZrO2 and Nb2O5 has been investigated under various conditions. The results confirmed that the activity of La2O3 and Nd2O3 was always much higher than that of the remaining two. The surface basicity/base strength distribution of pure La2O3, Nd2O3, ZrO2 and Nb2O5 was measured using a test reaction of transformation of 2-butanol and a temperature-programmed desorption of CO2. Both methods showed that La2O3 and Nd2O3 had high basicity and contained medium and strong basic sites (lanthanum oxide more and neodymium oxide somewhat less). ZrO2 had only negligible amount of weak basic sites and Nb2O5 was rather acidic. The confrontation of the basicity and catalytic performance indicated that in the case of investigated oxides, the basicity (especially strong basic sites) could be a decisive factor in determination of the catalytic activity in OCM. Only in the case of ZrO2 it was observed a moderate catalytic performance in spite of negligible basicity. The influence of a gas atmosphere used in the calcination of oxides (flowing oxygen, helium and nitrogen) on their basicity and catalytic activity in OCM had been also investigated. Contrary to earlier observations with MgO, no effect of calcination atmosphere on the catalytic performance of investigated oxides in OCM and on their basicity was observed. 相似文献