首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study uses rotating ring-disk electrode (RRDE) and linear sweep voltammetry (LSV) to characterize oxygen reduction kinetics in alkaline solution on platinum electrodes with various thickness of hydrous oxide (oxyhydroxy) film. Oxyhydroxy films are created on Pt electrodes by pretreatment in 1.0 mol dm−3 KOH at a constant voltage. The pretreatment voltage ranges from −1.2 to 1.0 V and is increased stepwise before each new experimental run to produce seven discreet films. LSV plots show oxyhydroxy film thickness strongly inhibits oxygen reduction and is inversely proportional to RRDE oxygen reduction current ID for LSV voltages ED from −0.1 to −0.46 V, but this trend reverses at ED more negative than −0.46 V so that the worst-performing electrode becomes the best. However, this improvement disappears at around −0.8 V, suggesting this change involves a negatively charged ion, possibly embedded into the metal in the top few atomic layers either interstitially or substitutionally. The 1.0 V-pretreated electrode in the ED range from −0.46 to −0.9 V of highest oxygen reduction current also exhibits the lowest hydrogen peroxide production, with zero H2O2 produced at −0.6 V, indicating the brief presence of the oxyhydroxy film on the Pt surface has strong lingering effects. The post-oxyhydroxy Pt surface is very different than the native Pt for oxygen reduction pathway and efficiency. Reaction order with respect to oxygen is close to 1. The rate constants of the direct O2 to H2O electroreduction reaction are increased with decreasing the potential from −0.2 to −0.6 V, but the O2 to H2O2 electroreduction is contrary to this expectation. The rate constants of H2O2 decomposition on the oxyhydroxy film-covered Pt electrode are near constant around 1 × 10−4 cm s−1 at ED > −0.5 V.  相似文献   

2.
An EasyTest Cell concept is applied to study the performance characteristics of the electrochemical processor for polymer electrolyte membrane electrochemical hydrogen energy converters (PEM EHEC), broadly known as a membrane electrode assembly (MEA). A series of MEAs consisting of Nafion 117 polymer electrolyte and magnetron sputtered Pt, IrOx, and composite IrOx/Pt/IrOx catalysts with varying catalytic loadings were investigated. The partial electrode reactions proceeding in the real PEM EHEC, namely hydrogen oxidation (HOR), hydrogen evolution (HER), oxygen reduction (ORR), and oxygen evolution (OER), are simulated and studied in a recently developed test cell with a unitized gas compartment. The EasyTest Cell design gives possibilities for strict control of the experimental conditions by avoiding the usage of any auxilliary gas conditioning equipment. By varying the thickness of the sputtered Pt film, the catalyst loading is remarkably reduced (from 0.5 to 0.06 mg cm−2 or about 8 times) for both HOR and HER without any sacrifice of the electrode performance. The electrode with 0.2 mg cm−2 sputtered IrOx shows the best OER performance. The composite IrOx/Pt/IrOx electrode demonstrated a bi-functional catalytic activity toward both OER and ORR, as well as improved gas diffusion properties toward ORR compared to the single Pt layer with the same catalytic loading.A phenomenological criterion for evaluating the gas diffusion properties of the electrodes is proposed. The applied testing approach is validated via comparison of the results obtained in the EasyTestCell and the common laboratory PEM electrolytic cell.  相似文献   

3.
The oxygen reduction mechanism was investigated at the porous LSM-patterned YSZ composite electrode by employing the ac-impedance spectroscopy and the potentiostatic current transient (PCT) technique. For this purpose, the dense YSZ pellet was patterned by a laser beam, and was then coated with the LSM slurry. The length of three-phase boundaries (TPBs) per unit area lTPB was effectively controlled by varying the width of the YSZ column. From analyses of the ac-impedance spectra and the cathodic PCTs obtained from the electrodes based upon the modified transmission line model (TLM), it was first experimentally confirmed that the effective migration length lm decreased with increasing lTPB under the mixed migration and charge-transfer control. Secondly, as the value of lTPB increases, the charge-transfer resistance Rct is decreased to a more extent but the ion migration resistance Ri is reduced to a less extent. Finally, from a comparison of the cathodic PCTs measured on the porous LSM-YSZ composite electrode to those measured on the porous LSM-patterned YSZ composite electrode, the oxygen reduction kinetics at that porous composite electrode was discussed in terms of the steady-state current density ist and the time to reach the steady-state current density tst.  相似文献   

4.
The influence of oxygen gas added to hydrogen in their electrode reactions at the Pt/Nafion interface was investigated using ac impedance method. The electrochemical cell was arranged in either electrolytic (hydrogen enrichment) or galvanic (fuel cell) mode. The impedance spectra of the electrode reaction of a H2/O2 gas mixture were taken in each mode as a function of the gas composition, electrode surface roughness and the cell potential. The spectrum taken for the anodic reaction of electrolytic arrangement confirmed the anodic oxygen reduction reaction (AOR, the local consumption of hydrogen by the added oxygen) by showing an independent arc distinguishable from that for hydrogen oxidation. But the independent arc was not revealed in the spectrum taken on a smooth (low surface area) electrode or on a Pt/C anode of the galvanic cell. At any cell current density, the electrolytic mode showed its anodic overpotential much higher (nearly three times higher at the current density of 100 mA cm−2) than the potential registered in galvanic mode implying that the oxygen gas in the mixture engages more active and independent AOR at the anode of the electrolytic cell.  相似文献   

5.
E.H. Yu  K. Scott  R.W. Reeve 《Fuel Cells》2003,3(4):169-176
A study of O2 reduction in 1 M NaOH solution at gas diffusion electrodes made from carbon supported Pt and Pt/Ru catalysts is reported. Two Tafel regions were observed for both the Pt and Pt/Ru electrodes. Although the same mechanism was suggested for oxygen reduction on both Pt and Pt/Ru catalysts, the O2 reduction activity was lower on Ru. Electrochemical Impedance Spectroscopy (EIS) analysis was carried out at different potentials and showed the significant contribution of diffusion on the reaction process and kinetics. The effect of methanol on O2 reduction was investigated in solutions containing various concentrations of methanol. The electrode performance deteriorated with increasing methanol concentration because of a mixed cathode potential. The methanol tolerance, i. e., the methanol concentration which polarises the O2 reduction reaction for O2 reduction, at the Pt/C electrode with a Pt loading of 1.2 mg cm–2 is 0.2 M methanol in 1 M NaOH.  相似文献   

6.
The effect of the surface roughness on the cell-impedance-controlled lithium transport through the Li1−δCoO2 film electrode was experimentally investigated in a 1 M LiClO4-PC solution by the analyses of the potentiostatic current transient (PCT) and the linear sweep voltammogram (LSV). The flat and fractal Li1−δCoO2 film electrodes were prepared on the Pt/polished Al2O3 substrate and the surface-modified Pt/unpolished Al2O3 substrate, respectively. From the ac-impedance spectra obtained from the flat and fractal electrodes, it is found that the apparent self-similar fractal dimension reduces the charge-transfer resistance. All the PCTs did not exhibit the generalised Cottrell behaviour until the characteristic time tch and all the power dependence of the peak current on the potential scan rate positively deviated from the generalised Randles-Sevcik behaviour above the characteristic scan rate νch in the LSVs. From the analyses of the PCTs and the LSVs in terms of tch and νch, furthermore, it is experimentally confirmed that the surface roughness plays a significant role in the kinetic facilitation of the interfacial charge-transfer reaction during the whole lithium intercalation and deintercalation processes.  相似文献   

7.
Platinum nanoparticles are synthesized by alcohol reduction method using Nafion as a stabilizer under various conditions such as the Nafion/Pt molar ratio and reflux temperature. Nafion-Pt nanoparticles are characterized by agglomeration and the particle size is typically in the range of 2-4 nm. The electrocatalytic activity of Nafion-Pt nanoparticles for polymer electrolyte and direct methanol fuel cells (PEFCs and DMFCs) is investigated in comparison to that of unsupported Pt black and carbon-supported Pt/C electrocatalysts. Nafion-Pt nanoparticles prepared with low Nafion/Pt ratios show higher and/or comparable activities towards O2 reduction reaction in the absence and presence of methanol in comparison to that of Pt black and Pt/C electrocatalysts. In contrast, the electrocatalytic activity of the Nafion-Pt nanoparticles for the methanol oxidation reaction is very low. The results indicate that Pt nanoparticles embedded in Nafion polyelectrolyte are potential methanol tolerant electrocatalysts for the O2 reduction reaction in DMFCs.  相似文献   

8.
The work presents a study on the influence of the sputtering pressure on the surface structure and morphology of low Pt loaded electrodes and their electrochemical behaviour toward oxygen reduction reaction (orr) in sulphuric acid solution and polymer electrolyte membrane (Nafion 117). Pt was deposited as thin film upon hydrophobic carbon paper substrates at sputtering pressure varied in the range 2-13 Pa. The test samples are analysed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The catalytic activity is assessed by applying the methods of linear sweep voltammetry (LSV) on rotating disc electrode (RDE) and cyclic voltammetry (CV). The results obtained show strong influence of the sputtering pressure on the surface structure and crystal orientation which in turn, affects the orr efficiency. The best electrode performance in both electrolytes used is obtained for the Pt film deposited at pressure of 9 Pa. The results obtained in Nafion 117 show that catalyst utilisation in this electrode exceeds significantly the one for a commercial ELAT electrode at the same operation conditions. The research demonstrated that by simple variations in the sputter regime it is possible to optimise the catalysts morphology in order to increase the catalytic activity toward the electrochemical reaction of interest at the same time controlling precisely the required precious metal loading.  相似文献   

9.
The kinetics and mechanism of the reaction of chemisorbed oxide (Pt-O) layer on a smooth Pt electrode with H2 dissolved in 1 M H2SO4 solution were investigated under the open circuit condition.It was found that a monolayer of Pt-O on the electrode surface is reduced first at a slow rate which is of second order in chemisorbed oxygen in the range 1 ≧ θ ≥ 0·65 and then at a rapid rate which is proportional to (1 – nθ)2 in the range 0·6 ≥ θ > 0, where θ is the fraction of the surface covered by oxygen. The factor n, which was constant for the electrode oxidized under a given condition, was assumed to be the number of Pt sites deactivated by each one of the chemisorbed oxygen atoms. For the transiently formed oxide, n was estimated to be 1·64. It was also observed that all over the coverage range the reaction rate was proportional to the partial pressure of H2. The variation in reduction rate with the decrease of the coverage was interpreted in terms of change in reduction mechanism from the chemical reaction to the electrochemical reaction.  相似文献   

10.
The effect of mass transport on the electrochemical behaviour of carbon gas-diffusion air electrodes in alkaline solution was investigated on the basis of ΔE(i) curves. These curves are obtained by subtraction of potential values for an electrode operating with airE air(i) from potential values for the same electrode operating with pure oxygenE oxygen(i) at the same current densityi. Three different regions on these curves connected with different modes of mass transport are recognized. A model of the gas-diffusion air electrode which takes into account the diffusion of the gas, diffusion of the dissolved gas, electrochemical reaction and IR drop is used to explain the experimental results.  相似文献   

11.
The kinetics of the H2 oxidation reaction at Nafion film covered Pt-black rotating disk electrodes (RDEs) in 0.5 M H2SO4 at 298 K was investigated by varying the Pt loading, Nafion film thickness, and rotating rate. The equation describing the H2 oxidation kinetics at an RDE with a Nafion film covered porous Pt layer was derived, assuming a Tafel-Volmer mechanism and taking into account the mass transfer resistances in the aqueous electrolyte, Nafion film, and Pt layer. The H2 oxidation reaction at the Pt layer was proved to be reversible and the measurable current density was determined entirely by the mass transfer of H2 in the aqueous electrolyte and the Nafion film; the apparent kinetic current density measured was due to the experimental error. More accurate results of kinetic analysis were obtained in this work than our results reported previously.  相似文献   

12.
A redox couple based electrocatalyst comprising of Pt-Multi Wall Carbon NanoTube (Pt-MWCNT) promoted with molybdenum oxide (MoOx, 2 < x < 3) nanoparticles was prepared. The objective was to effectively organize the Pt-MoOx interface on the smooth MWCNT surface to overcome the practical difficulties associated with establishing such interface with Pt dispersed on carbon morphologies possessing surface irregularities. The present study revealed the importance of stringent controlling of the additive level for maintaining a balanced bifunctional behavior of the catalyst combination through the synergistic effects by the components and the need of a proton conducting membrane operable at high temperature to get better output from the Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems. An indigenously developed polybenzimidazole (PBI) membrane was used to fabricate a membrane electrode assembly (MEA) as it can be operated at higher temperatures compared to that of Nafion membranes. MoOx additive level was carefully controlled by monitoring the active Pt area by cyclic voltammetry. All prepared electrocatalysts were characterized by using HRTEM, XRD and XPS to get information on dispersion and morphology, crystalinity and oxidation state of different elements, respectively. The system prepared with 5% MoOx addition with respect to Pt (hereafter Pt-MoOx(5%)-MWCNT) displayed balanced active Pt area and excellent oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) activities. Rotating Disk Electrode (RDE) system was extensively utilized to understand the ORR kinetics and the favorable role of MoOx as the promoter in the reaction. The kinetic current (jk) measured at 0.02 V vs. Hg/Hg2SO4 electrode from the Koutecky-Levich plots was 9 times higher and the apparent activation energy during single cell evaluation was 27 kJ/mol lower for the MoOx promoted system, compared to the system without the additive. A higher operating temperature significantly favored the cell performance by a combined effect of enhancement in proton conductivity of the PBI membrane and possible kinetic benefit by the well postulated oxygen spill over effect by the MoOx type systems in some combinations involving such systems.  相似文献   

13.
Degradation and recovery of electrode performance during the operation of polymer electrolyte fuel cells (PEFCs) with sulfonated polyimide (SPI-8) and Nafion® membranes were evaluated by changes in cell voltage (Ecell), mass activity (MA), Tafel slope (TS), and electrochemical surface area (ECA) of the Pt catalyst. During continuous cell operation, values of Ecell, MA and ECA decreased, but TS increased. It was found by ion chromatography combined with mass spectrometry (IC/MS) that the drain water contained, as decomposition products, bisulfate and several other ionic compounds derived from the side chain of SPI-8. These ionic compounds were found to adsorb on the surface of the Pt cathode catalyst and to suppress oxygen adsorption, resulting in increases in the overpotential for the oxygen reduction reaction (ORR). The cathode performance was able to recover by potential cycling under high humidity conditions, as the ionic compounds were removed from the Pt surface.  相似文献   

14.
Electrocatalytic oxygen reduction reaction (ORR) activities of the pyrochlore oxides Ln2Zr2O7?δ (LnZ) and Ln2Sn2O7?δ (LnS) (Ln = La, Pr, Nd, Sm) were examined in 0.1 M KOH solution at 70 °C. The onset potential (E on) of the oxygen reduction current and the efficiency (Eff 4) of 4-electron reduction of oxygen were evaluated by semi-steady state voltammetry with a rotating ring-disk electrode. In both LnZ and LnS series, the E on values were ~0.85 V versus reversible hydrogen electrode. A relation was found between the E on values and the lattice parameters; i.e. on the whole, the ORR activity became high with an increase in the lattice parameters. When the Ln ion was the same, the LnZ series exhibited higher ORR activities than the LnS series. The pyrochlore LaZ with the highest ORR activity showed a Eff 4 value higher than 85%. Moreover, Mn-incorporation to LaZ led to a mixed-oxide (1–xLaZ?xLaM) of LaZ and the perovskite LaMnO3 (LaM). However, the E on value apparently sifted to a more positive potential probably due to LaMnO3, and the magnitude of the cathodic ORR current increased with an increase in the mixing content up to x = 0.3. The mixed-oxide 0.7LaZ–0.3LaM exhibited the highest ORR activity (E on = ~0.90 V and Eff 4 > 95%), which was comparable to that of a conventional 20 mass% Pt/C catalyst.  相似文献   

15.
During alkaline water electrolysis, additional energy losses occur owing the presence of bubbles in the solution, particularly close to both the gas-evolving electrodes.For both hydrogen and oxygen-evolving disc electrodes (diameters from 0.2 to 2.0 mm) in KOH solutions, the reduced increase in ohmic resistance, ΔR*, has been determined by the alternating current—impedance method.It has been found that, for hydrogen-evolving electrodes, log ΔR* = 11 + b log i, where the exponent b at 0.1 A cm?2 < i < 5 A cm?2 does not depend on the diameter, position and material of the electrode, pressure and temperature but does significantly depend on KOH concentration. The factor a1, however, being dependent on the position, height and material of electrode, temperature and KOH concentration. ΔR* cannot be expressed for the oxygen-evolving electrode by a general equation, due to the coalescence behaviour of oxygen bubbles.Moreover, it has been established that the Bruggemann equation is useful to determine the ohmic resistance of a solution layer containing gas bubbles of different size at which each bubbles adheres to the electrode surface.  相似文献   

16.
A new method for studying surface reaction of LaNi5 absorbing alloy in KOH solution (pH 12) was established. It is based on tip-substrate voltammetry of scanning electrochemical microscopy (SECM) where the tip faradic current is recorded while scanning the substrate potential. The Pt electrode is selected as tip electrode, and the Pt oxide formation-reduction is used as a pH-dependent reaction while the tip potential is held at a constant value. As substrate surface reactions proceed, the pH of solution can be changed, and then the tip faradic current is recorded. The mechanism of discharge process of LaNi5 alloy was analyzed by comparing the tip current (Itip) versus substrate potential (Esub) curve, which reflects the exchange of H+ or OH between the alloy surface and the solution, with the substrate current (Isub) versus substrate potential (Esub) curve, which reflects the exchange of electron on the LaNi5 alloy surface. The results showed that the OH adsorption process is occurred before the electron transfer process during discharge process, and the adsorptive OH helps the oxidation of adsorbed hydrogen atom on the alloy surface. A quantitative assessment for the maximum changes of pH during discharge process is also proposed, and the variation as large as 2.65 pH unit was detected.  相似文献   

17.
The electrolytic reduction of ferricyanide and the electrolytic oxidation of ferrocyanide have been carried out with exposing the magnetic field of 1000 or 1800 gauss. The current clearly increased after the magnetic exposure. The maximum current was obtained when the magnetic flux directed in parallel with the surface of electrode. These are speculated in terms of magnetohydrodynamic mechanism. The current decrease caused by relaxation process was observed after the removal of magnetic flux. The relaxation time obtained was temperature-dependent. Therefore the values of apparent transition energy, Etrans, were determined from the Arrhenius' plots of relaxation time against temperature. The magnitude of Etrans was dependent on the concentration of ferricyanide or ferrocyanide, and the viscosity and the conductivity of electrolyte solution. The activation energy of viscosity of electrolyte solution was compared with Etrans. As a conclusion, it was suggested that Etrans may be influenced by the velocity of magnetohydrodynamic flow, which was controlled by the diffusion current in electrolysis and the viscosity of electrolyte solution.  相似文献   

18.
Z.D. Wei  L.L. Li  Z.T. Xia 《Electrochimica acta》2005,50(11):2279-2287
The research aims to increase the utilization of platinum (Pt) catalysts and thus to lower the catalyst loadings in the electrode for oxygen reduction reaction (ORR). The electrodeposition of Pt was performed on a rotation disk electrode (RDE) of glass carbon (GC), on which a layer of Nafion-bonded carbon of Vulcan XC 72R was dispersed in advance. The behaviors of Pt RDE and GC RDE in an aqueous solution containing HCl and H2PtCl6 were firstly studied. It was found that Pt deposition could be achieved if the electrode potential is controlled below −0.20 V versus (saturated-potassium-chloride silver chloride electrode) SSCE. However, quite a high overpotential is necessary if a quick and apparent deposition were required. Unfortunately, at a high overpotential, the hydrogen evolution would be unavoidable and even accelerated by the formation of nanometer size of Pt particles on the RDE. It was found that it is futile to increase platinum deposits just through extending the deposition time. It was also found that too large deposition current is not helpful for increase of platinum deposition because most of the current was consumed on hydrogen evolution in this case. It has been confirmed that it is conducive to richen Pt ions, present in the form of anionic complex in solution, onto the working electrode to be deposited. It is also helpful to eliminate the hydrogen bubbles formed on the working electrode, i.e., uncatalyzed carbon electrode (UCE), by imposing a positive current on the UCE for a length of time in advance of each cathodic deposition. The potential changes during deposition were recorded. Cyclic voltammograms (CV) of electrodes in 0.5 M H2SO4 before and after the deposition were used to assess loading of metal catalysts in a wide range of potential from −0.20 to 1.1 V versus SSCE. The results have shown that the performance of such an electrode with loadings estimated to be 50 μg Pt/cm2 is much better than those of a conventional electrode with loadings of 100 μg Pt/cm2.  相似文献   

19.
Oxygen reduction reaction (ORR) on Pt microelectrode was used for developing a micro pH sensor for scanning electrochemical microscopy (SECM) study in this work. When the potential of Pt microelectrode was held constant in ORR region, the ORR current (cathodic current) increased with decreasing solution pH and vice versa. The response time of the ORR current to pH changes was measured to be ca. 30 ms which implies that the pH response is fast enough for monitoring the temporal pH changes. Furthermore, a fine linear relationship was found to exist between the half wave potential of ORR (E1/2) and the solution pH value, and the slope is −46 mV/pH. The Pt micro pH sensor was located 1 μm above the LaNi5−xAlx (x = 0, 0.3) substrate electrode surface in pH = 9 KOH solution to perform the tip-substrate voltammetry of SECM. In tip voltammogram, the ORR tip current qualitatively reflects the transit solution pH changes during LaNi5−xAlx discharge reaction. Also, the minimum values of the solution pH near LaNi5 and LaNi4.7Al0.3 surface during the discharge reaction were quantitatively detected; they were 7.17 and 7.57, respectively. The result indicates that Al partial substitution for Ni degrades the maximum discharge ability of the alloy and decreases the hydrogen diffusion coefficient in alloy bulk.  相似文献   

20.
The roles of adsorbed hydroxyl radicals, OH, at a high temperature and adsorbed hydrogen atoms, H, in an acidic solution were investigated in the electrochemical reactions on Pt electrode by using potentiodynamic polarisation experiment, cyclic voltammetry and constant-potential electrolysis combined with UV/VIS analysis. From the analysis of the polarisation curves obtained from Pt electrode in a 0.185 M H3BO3 solution at 473 K, it was found that the reducing capability of dissolved hydrogen is significantly enhanced due to the increases of the mass transfer and the electron transfer rates. Especially, it is suggested that the stable Pt-OHad plays a significant role in the passivation reaction in the potential range from 0.60 to 0.75 VSHE. From the analyses of the experimental results for the electrochemical reduction of UO22+ ions on Pt surface in a 1.0 M HClO4 solution, it is recognised that the reduction reaction of UO22+ to U4+ ions is strongly dependent on the hydrogen atoms adsorbed on Pt electrode (indirect reduction of UO22+) as well as on the electrons transferred from Pt electrode (direct reduction of UO22+). In addition, the reduction mechanism of UO22+ ions involved in Pt-Had is also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号