首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical oxidation of BH4 in 2 M NaOH on Pt and Au (i.e. catalytic and non-catalytic electrodes, respectively, for BH4 hydrolysis accompanied by H2 evolution) has been studied by cyclic voltammetry, chrono-techniques (i.e., potentiometry, amperometry, coulometry) and electrochemical impedance spectroscopy. In the case of Pt the cyclic voltammetry behaviour of BH4 is influenced by both, the catalytic hydrolysis of BH4 yielding H2 (followed by electrooxidation of the latter at peak potentials between −0.7 and −0.9 V versus Ag/AgCl, KClstd) and direct oxidation of BH4 at more positive potentials, i.e., between −0.15 and −0.05 V. Thiourea (TU, 1.5×10−3 M) was an effective inhibitor of the catalytic hydrolysis associated with BH4 electrooxidation on Pt. Therefore, in the presence of TU, only the direct oxidation of BH4 has been detected, with peak potentials between −0.2 and 0 V. It is proposed that TU could improve the BH4 utilization efficiency and the coulombic efficiency of direct borohydride fuel cells using catalytic anodes. The electrooxidation of BH4 on Pt/TU is an overall four-electron process, instead of the maximum eight electrons reported for Au, and it is affected by adsorbed species such as BH4 (fractional surface coverage ∼0.3), TU and possibly reaction intermediates.  相似文献   

2.
Sodium borohydride (NaBH4) is receiving increasing attention during the last decade regarding its possible application in energy systems. NaBH4 has the dual potential of generating hydrogen on demand or being directly oxidised in a direct borohydride fuel cell (DBFC). Progress on DBFCs relies on the development of systematic studies to allow a more comprehensive characterisation of the borohydride (BH4) oxidation process. In this paper, cyclic voltammetry (CV) is applied to study systematically the BH4 electrooxidation on a gold (Au) disc macroelectrode in 2 mol l−1 NaOH solutions. Voltammograms are obtained for various NaBH4 concentrations [0.03-0.12 mol l−1], working temperatures [25-65 °C], and potential scan rates [0.02-20 V s−1], over a wide potential range [−1.0-0.8 V vs. SCE]. Modelling of CV data indicates that BH4 oxidation on Au electrode follows a first irreversible electrochemical pathway via the direct BH4 oxidation reaction, involving nearly 8 mol of exchanged electrons per mole of BH4. A second pathway, at higher potentials, concerns a yet undetermined oxidation mechanism in the partially oxidised Au surface which, in a third pathway, is reactivated, allowing an electrochemical-adsorption mechanism to take place. Relevant parameters such as transfer coefficient, kinetic rate constant, standard rate constant, charge transfer activation energy, and number of exchanged electrons are estimated. The BH4 oxidation reaction on Au is found to be first order with respect to BH4.  相似文献   

3.
The direct oxidation of sodium borohydride in concentrated sodium hydroxide medium has been studied by cyclic and linear voltammetry, chronoamperometry and chronopotentiometry for silver and gold electrocatalysts, either bulk and polycrystalline or nanodispersed over high area carbon blacks. Gold and silver yield rather complete utilisation of the reducer: around 7.5 electrons are delivered on these materials, versus 4 at the most for platinum as a result of the BH4 non-negligible hydrolysis taking place on this latter material. The kinetic parameters for the direct borohydride oxidation are better for gold than for silver. A strong influence of the ratio of sodium hydroxide versus sodium borohydride is found: whereas the theoretical stoichiometry does forecast that eight hydroxide ions are needed for each borohydride ion, our experimental results prove that a larger excess hydroxide ion is necessary in quasi-steady state conditions. When the above-mentioned ratio is unity (1 M NaOH and 1 M NaBH4), the tetrahydroborate ions direct oxidation is limited by the hydroxide concentration, and their hydrolysis is no longer negligible. The hydrolysis products are probably BH3OH ions, for which gold displays a rather good oxidation activity. Additionally, silver, which is a weak BH4 oxidation electrocatalyst, exhibits the best activity of all the studied materials towards the BH3OH direct oxidation.Finally, carbon-supported gold nanoparticles seem promising as anode material to be used in direct borohydride fuel cells.  相似文献   

4.
Electrochemical oxidation of sodium borohydride (NaBH4) and ammonia borane (NH3BH3) (AB) have been studied on titanium carbide electrode. The oxidation is followed by using cyclic voltammetry, chronoamperometry and polarization measurements. A fuel cell with TiC as anode and 40 wt% Pt/C as cathode is constructed and the polarization behaviour is studied with NaBH4 as anodic fuel and hydrogen peroxide as catholyte. A maximum power density of 65 mW cm−2 at a load current density of 83 mA cm−2 is obtained at 343 K in the case of borhydride-based fuel cell and a value of 85 mW cm−2 at 105 mA cm−2 is obtained in the case of AB-based fuel cell at 353 K.  相似文献   

5.
In order to mimic the operation of the air-cathode in a direct borohydride alkaline fuel cell, we studied the oxygen reduction reaction (ORR) in sodium hydroxide solution containing traces of borohydride. The activity of several ORR electrocatalysts, namely carbon-supported platinum, gold, silver and manganese oxide, has been investigated using slow-scan linear voltammetry. Whereas platinum is one of the best electrocatalyst in pure sodium hydroxide, none of the classical electrocatalysts: gold, silver and platinum, exhibit sufficient selectivity towards the ORR. When BH4 is present in solution, the potential taken by electrodes using such materials is a mixed potential, following the competition between the ORR and the NaBH4 hydrolysis and/or oxidation. Conversely, manganese oxide-based electrocatalysts exhibit very interesting behaviour towards the ORR in alkaline medium; while their intrinsic ORR activity in pure sodium hydroxide is quite as good as that for platinum, they still display a remarkable selectivity for this reaction when the electrolyte contains traces of sodium borohydride.As a result, carbon-supported manganese oxide-based nanoparticles seem very interesting materials to be used in direct borohydride fuel cell.  相似文献   

6.
The present discussion paper deals with the Gyenge's [E. Gyenge, Electrochim. Acta 49 (2004) 965] suggestion to add thiourea (H2N-CS-NH2) to the borohydride fuel of the direct borohydride fuel cell (DBFC). It is expected that thiourea inhibits the hydrogen evolution (stem from the borohydride hydrolysis, a side reaction) that occurs at the anode of the DBFC where in fact it is expected the direct oxidation of borohydride.However, thiourea is an organic sulphur compound and it is well known that the sulphur species are poisons for the metallic catalysts. Hence, the present discussion paper asks a question: may thiourea and the sulphur species stem from its decomposition act as poisons of metallic sites of catalysts used as DBFC anodes?  相似文献   

7.
R. Chamoun  B. Demirci  D. Cornu  R. Khoury  P. Miele 《Fuel》2011,90(5):1919-1926
The stabilized aqueous solution of sodium borohydride NaBH4 is a promising hydrogen fuel but the stored hydrogen has to be released with the help of a catalyst through hydrolysis. In the present study, we developed Co- and clay-based supported catalysts. Three raw clays were taken from soil in Lebanon. Once purified and annealed, they were used as supports. Two of them, mainly composed of kaolinite and illite respectively, showed to be promising owing to their attractive specific surface areas (58.0 and 67.1 m2 g−1) as well as the high reactivity of the corresponding 15 wt.% Co catalysts (i.e. NaBH4 conversions of 100% and hydrogen generation rates up to ∼31 L(H2) min−1 g−1(Co)). A kinetic study was also carried out. The main results are reported and discussed herein.  相似文献   

8.
The mechanism of borohydride oxidation and the competing hydrolysis reaction are examined over Pt(1 1 1) using density functional theory (DFT) methods. Adsorption of BH4 over Au(1 1 1) and Pt(1 1 1) is examined. Adsorption over Pt(1 1 1) is dissociative and extremely exothermic at potentials of interest, leading to a high surface coverage of H* for which gaseous hydrogen evolution is competitive with oxidation. Elementary surface reactions oxidizing B-containing intermediates are favorable over Pt(1 1 1) at −0.85 V (SHE), consistent with experimental voltammetry results in the literature. The energetics of the initial adsorption step dictate the activity limitation of gold anodes and the selectivity limitation of platinum electrodes. This adsorption energy can be rapidly calculated with DFT methods, enabling screening of pure metals, alloys, poisons, and promoters to optimize borohydride oxidation catalyst design.  相似文献   

9.
Our study explores the use of porous carbon as anode catalyst support to improve borohydride utilization in a direct borohydride fuel cell. Pt catalysts supported by carbon aerogel (CA) and macroporous carbon (MPC) are synthesized by template method. The pores in porous carbon materials catch hydrogen bubbles to regulate the contact of anolyte with catalytic sites, and this leads to the depression of hydrogen evolution during BH4 electrooxidation. However, the hydrogen bubbles in the pores simultaneously deteriorate charge carrier transport and thus increase anode polarization. The CA‐supported Pt catalyst improves the coulombic efficiency of BH4 electrooxidation. However, the MPC‐supported Pt catalyst performed better than the CA‐supported Pt catalyst. MPC also has a good pore distribution, which improves the coulombic efficiency of BH4 electrooxidation without decreasing anode performance.  相似文献   

10.
Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.  相似文献   

11.
In the past few years, borohydrides have gathered a lot of attention as an energy carrier for fuel cell application. Numerous investigations on both hydrogen generation and direct oxidation of NaBH4 have been published. Nonetheless, in our knowledge, only a few catalysts are capable to completely perform the direct oxidation of NaBH4 at low potentials without hydrogen evolution.In this work, carbon supported Pd1−xBix/C and Pt1−xBix/C nanocatalysts were synthesized by a “water in oil” microemulsion method. The influence of surface modifications of Pt and Pd by Bi on the electrooxidation of sodium borohydride in alkaline media was evaluated. Physical and electrochemical methods were applied to characterize the structure and surface of the synthesized catalysts.It was verified that bismuth is present at the surface of the bimetallic catalysts and that hydrogen adsorption/desorption reactions are strongly limited on Pt and Pd surfaces with high bismuth coverage. Although the onset potential for NaBH4 oxidation on PdxBi1−x/C catalysts is ca. 0.2 V higher than that for Pd/C, the presence of bismuth on palladium surface influences the reaction mechanism, limiting hydrogen evolution and oxidation in the case of Pd0.8Bi0.2 catalyst. On Pt0.9Bi0.1 catalyst the onset potential remains unchanged comparing to Pt/C and negligible hydrogen evolution was observed in the whole potential range where the catalyst is active. The number of exchanged electrons was calculated using the Koutecky-Levich equation and it was found that for Pt0.9Bi0.1 catalyst, ca. 8 electrons are exchanged per BH4 ion at low potentials. The presented results are remarkable evidencing that NaBH4 can be directly oxidized at low potentials with high energy efficiency.  相似文献   

12.
Impedance spectroscopy and radiometric method have been used in the study of thiourea (TU) adsorption on monocrystalline silver electrodes of basal indices: (1 1 1), (1 0 0) and (1 1 0) in neutral solution. The dependence of the surface concentration of TU on the electrode potential and on the bulk concentration was determined for each studied surface. From radiometric measurements it follows that adsorption of TU on silver electrodes takes place in the entire range of applied potentials. The process of adsorption is practically reversible with respect to the electrode potential (in the range of the double layer) and the bulk concentration of TU. Differential capacity of silver electrodes in 0.01 M NaClO4 solution containing TU of concentrations from 10−6 to 5 × 10−4 M has been measured. The isotherms of TU adsorption, determined from the capacitance and radiometric measurements have been compared and the Gibbs energy of adsorption was calculated. The values of limiting surface concentration of adsorbed TU as well as the Gibbs energy of adsorption depend on the plane of Ag electrode and follow the sequence: Ag(1 1 1) > Ag(1 0 0) > Ag(1 1 0) which is in agreement with the surface density of Ag atoms.  相似文献   

13.
Direct borohydride fuel cells (DBFC) exhibit some potential regarding the powering of small portable electronic devices, thanks to their high energy density as well as the facile and safe storage of borohydride salts. However, DBFC are hindered because (i) the borohydride oxidation reaction (BOR) is complex, (ii) its mechanism imperfectly determined yet and (iii) no practical electrocatalyst exhibits both fast BOR kinetics and high faradaic efficiency. In this context, we characterized the BOR mechanism for polycrystalline bulk gold (a classical model BOR electrocatalyst) in the rotating disk electrode (RDE) setup. Modeling cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) data, we propose a simplified reaction pathway, the theoretical behavior of which agrees with the experimental findings. This pathway includes at least a first irreversible electrochemical step (E) for BH4 oxidation, which competes with the electrochemical adsorption reaction (EAR) of OH anions at high potentials.  相似文献   

14.
LaNi0.9Ru0.1O3 as cathode catalyst for a direct borohydride fuel cell (DBFC) was synthesized and investigated for the first time. The electrochemical experiments indicated that perovskite-type oxide LaNi0.9Ru0.1O3 exhibited higher electrochemical performance compared with LaNiO3, which suggested incorporation of element Ru into LaNiO3 could further improve the catalytic ability for oxygen reduction reaction (ORR) in alkaline solution. LaNi0.9Ru0.1O3 catalyst was found to have good tolerance of BH4. Meanwhile the maximum power density of 171 mW cm−2 was obtained at 65 °C without using any precious ion exchange membrane. A life test indicated that the DBFC displayed no significant degradation for about 70 h testing. The electrochemical data suggested that LaNi0.9Ru0.1O3, which provided a simple way to construct DBFCs without using any ion exchange membrane, might be promising cathode catalyst with high performance and low cost for DBFCs.  相似文献   

15.
The influence of plating mode, chloride and thiourea (TU) on morphology of copper deposits has been studied. All experiments were conducted on disc electrodes rotating at 500 rpm and an average current density of 4 A dm−2 to produce 10 μm thick deposits. In additive-free solutions, the use of pulsed current (PC) improved deposit morphology and brightness over DC plating. In the presence of thiourea (no Cl), the deposits obtained by DC and PC plating were similar under most plating conditions. The presence of thiourea generally improved deposit quality over that obtained in additive-free solutions, but caused the formation of microscopic nodules and the deposits to appear slightly cloudy, resulting in lower reflectances than that of a polished uncoated copper surface. The addition of Cl to thiourea-containing solutions strongly influenced deposit morphology at both microscopic and macroscopic scales depending on chloride concentration and pulse conditions. It prevented nodule formation and created microscopically bright and reflective deposits, but caused extreme macroscopic roughness. Nevertheless, PC plating at 50 Hz in solutions containing appropriate amounts of thiourea and Cl was found to yield macroscopically and microscopically smooth deposits with reflectance similar to that of a polished uncoated copper substrate.  相似文献   

16.
The anodic oxidation of tetrahydroborate ion is studied in NaOH at stationary and rotating polycrystalline Au disk electrodes. Linear sweep and cyclic voltammetry are applied varying the scan and rotation rate from 0.005 to 51.200 V s−1 and from 52.3 to 314.1 rad s−1, correspondingly. The effects of variation of BH4 and NaOH concentrations as well as of the potential limits of the ranges studied have been initially followed. Most of the experiments have been carried out with 10.9 mM NaBH4 in 1.04 M NaOH at 293 K in the potential range from −1.300 to 0.900 V (vs. Ag/AgCl). It is found that 6 electrons are exchanged in the overall oxidation transformation. The kinetic analysis of the processes determining the two anodic peaks recorded under static conditions at scan rates lower than 0.500 V s−1 shows that 1.4 electrons are exchanged in the potential range of the first one (at ca −0.5 V), while the rate of the second one (at ca +0.3 V) is determined by a quasi-reversible 1-electron transfer reaction. A kinetic evidence for the participation of surface bound intermediates in the electro-oxidation process is provided. Two additional well outlined anodic peaks are recorded in the aforementioned potential range under specific experimental conditions. A quasi-8 electron mechanism involving four oxidation and hydrolysis steps is advanced to explain the experimental results. It accounts for the involvement of borohydride oxidation species and the Au+/Au3+ mediator couple.  相似文献   

17.
To use the protonic mesothermal fuel cell without humidification, mass transportation in diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]), trifluoromethanesulfuric acid (TfOH)-added [dema][TfO], and phosphoric acid (H3PO4)-added [dema][TfO] was investigated by electrochemical measurements. The diffusion coefficient and the solubility of oxygen were ca. 10−5 cm2 s−1 and ca. 10−3 M (=mol dm−3), respectively. Those of hydrogen were a factor of 10 and one-tenth compared to oxygen, respectively. The permeability, which is a product of the diffusion coefficient and solubility, of oxygen and hydrogen were almost the same for the perfluoroethylenesulfuric acid membrane and the sulfuric acid solution; therefore, these values are suitable for fuel cell applications. On the other hand, a diffusion limiting current was observed for the hydrogen evolution reaction. The current corresponded to ca. 10−10 mol cm−1 s−1 of the permeability, and the diffusion limiting species was the hydrogen carrier species. The TfOH addition enhanced the diffusion limiting current of [dema][TfO], and the H3PO4 addition eliminated the diffusion limit. The hydrogen bonds of H3PO4 or water-added H3PO4 might significantly enhance the transport of the hydrogen carrier species. Therefore, [dema][TfO] based materials are candidates for non-humidified mesothermal fuel cell electrolytes.  相似文献   

18.
We studied the borohydride oxidation reaction (BOR) by voltammetry for BH4 concentrations between 10−3 M and 0.1 M NaBH4 in 0.1–1 M NaOH for bulk polycrystalline Pt, Ag and alloyed Pt–Ag electrocatalysts. In order to compare the different electrocatalysts, we measured the kinetic parameters and the number of electrons exchanged (faradic efficiency). BOR on bulk Pt is more efficient when the concentration of NaBH4 increases (3e in 1 mM and 6e in 10 mM BH4/0.1 M NaOH). BOR on Pt can occur both in a direct pathway and in an indirect pathway including hydrogen generation via heterogeneous hydrolysis of BH4 and subsequent oxidation of its by-products (e.g. BH3OH and H2). BOR on Ag strongly depends on the pH: improved faradic efficiency is monitored for high pH (2e at pH 12.6 and 6e at pH 13.9 at 25 °C). The BOR kinetics is faster for Pt than for Ag (iPt=0.02 A cm−2, iAg=1.4 10−7 A cm−2 at E=−0.65 V vs. NHE in 1 mM NaBH4/0.1 M NaOH, 25 °C) both as a result from Pt high activity regarding the BH4 heterogeneous hydrolysis and subsequent HOR, above −0.83 V vs. NHE and following direct oxidation of BH4 or BH3OH below −0.83 V vs. NHE. Both Pt–Ag bulk alloys show unique behaviour: the number of electrons exchanged is rather high whatever the BH4 concentration and pH, while the kinetic parameters are quite similar to that of platinum, showing possible synergistic alloying effect.  相似文献   

19.
Porous poly(vinylidene fluoride) (PVDF)-NiB capsules were prepared by phase inversion of PVDF, nickel salt and sodium borohydride (NaBH4) mixtures in water. During the process, nickel salt was reduced to NiB particles by NaBH4, and the excess NaBH4 was hydrolyzed to produce hydrogen gas bubbles which aided the formation of the large holes inside the porous capsules. It was proved that the porous capsules can adsorb about 33 wt.% NaBH4 in THF/NaBH4 solution for about 4 h. Most of NiB particles were attached on the surface of the porous capsules with inside holes according to the observation of scanning electron microscopy (SEM) and EDS. The special structure of the capsules was successfully used as catalysts and container simultaneously for hydrogen production via catalytic hydrolysis of NaBH4 in aqueous solution.  相似文献   

20.
Electroreduction of hydrogen peroxide in acidic medium is reported onto carbon-supported iron tetramethoxy phenyl porphyrin (FeTMPP/C) as well as carbon-supported lead sulphate (PbSO4/C) electrodes. Both the catalytic electrodes can sustain electroreduction of hydrogen peroxide in direct borohydride fuel cells using hydrogen peroxide as oxidant but PbSO4/C electrode shows catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号