首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of varying operating parameters on the degradation of a single‐cell direct methanol fuel cell (DMFC) with serpentine flow channels was investigated. Fuel cell internal temperature, methanol concentration, and air and methanol flow rates were varied in experimental tests and fuel cell performance was chronologically recorded. A DMFC semi‐empirical performance model was developed to predict the polarization curves of the DMFC and validated at different operating conditions. Performance degradation was observed and modeled over time by a linear regression model. Unlike previous studies, the cumulative exposure of the operating factors to the fuel cell was considered in the degradation analysis. The degradation model shows the cell voltage generation capacity does not significantly degrade. However, the Tafel slope of the cell changes with cumulative exposure to methanol concentration and air flow, and the ohmic resistance changes with cumulative exposure to temperature, methanol and air flow.  相似文献   

2.
自呼吸式直接甲醇燃料电池性能及其传质特性   总被引:1,自引:1,他引:0  
针对有效面积为1 cm2的自呼吸式直接甲醇燃料电池(direct methanol fuel cell,DMFC)单电池,阳极采用燃料罐供液,将阴极侧集流体和夹具设计为一体式结构,并用自制的七合一膜电极组件对其进行测试,讨论了催化剂类型、扩散层材料、集流体结构等因素对其性能的影响,分析了电池内部的传质特性,优化了电池特别是其在中高电流密度条件下的性能。实验结果表明:采用Pt黑、Pt-Ru黑催化剂制作的自呼吸式DMFC能强化反应物的传质;采用碳布制作的膜电极更倾向于获得更高的极限电流密度;低电流密度时,因甲醇渗透电池电压随着甲醇浓度的增加而降低,但在中高电流密度下,电池性能随甲醇浓度的增大先升高后降低;平行集流体有利于阴阳极生成物的排出和反应物的传质,因此易获得较高的电池性能。  相似文献   

3.
The cell performance of direct methanol fuel cells (DMFC) is 0.5 V at 0.5 A cm–2 under high pressure oxygen operation (3 bar abs.) at 110 °C. However, high oxygen pressure operation at high temperatures is only useful in special market niches. Therefore, our work has now focused on air operation of a DMFC under low pressure (up to 1.5 bar abs.). At present, a power density of more than 100 mW cm–2 can be achieved at 0.5 V on air operation at 110 °C. These measurements were carried out in single cells with an electrode area of 3 cm2 and the air stoichiometry only amounted to 10. The effects of methanol concentration and temperature on the anode performance were studied by pseudo half cell measurements and the results are presented together with their impact on the cell voltage. A cell design with an electrode area of 550 cm2, which is appropriate for assembling a DMFC stack, was tested. A three-celled stack based on this design revealed nearly the same power densities as in the small experimental cells at low air excess pressure and the voltage–current curves for the three cells were almost identical. At 110 °C a power output of 165 W at a stack voltage of 1.5 V can be obtained in the air mode.  相似文献   

4.
The effect of the anode and cathode flow field depths on the performance of a single cell Direct methanol fuel cell (DMFC) of 45 cm2 active area were experimentally investigated. Double serpentine flow fields (DSFFs) with varying channel depth namely, 0.2, 0.4, 0.6, 0.8, and 1 mm but with fixed channel and rib width each of 1 mm on both anode and cathode were designed, fabricated, and tested. The experimental study involved measurement of pressure drops across anode and cathode flow field plates, polarization, and carbon dioxide concentration measurements at various current densities. The mass transport at both anode and cathode were found to increase with increase in pressure drop across the flow field on account of reduced channel depth from 1.0 to 0.4 mm at all current densities. However, further decrease to a channel depth of 0.2 mm was found to be counter-productive with different phenomena operating on either side viz., increased CO2 slug length on the anode flow channel and increased methanol crossover on the cathode side. Hence, the maximum performance for DMFCs was observed for a channel depth of 0.4 mm on anode and cathode flow fields. A decrease in flow field channel depth at cathode was found to increase the methanol crossover due to convective mass transfer effect.  相似文献   

5.
A novel tubular cathode for the direct methanol fuel cell (DMFC) is proposed, based on a tubular titanium mesh. A dip‐coating method has been developed for its fabrication. The tubular cathode is composed of titanium mesh, a cathode diffusion layer, a catalyst layer, and a recast Nafion® film. The titanium mesh is present at the inner circumference of the diffusion layer, while the recast Nafion® film is at the outer circumference of the catalyst layer. A DMFC single cell with a 3.5 mgPt cm–2 tubular cathode was able to perform as well, in terms of power density, as a conventional planar DMFC. A peak power density of 9 mW cm–2 was reached under atmospheric air at 25 °C.  相似文献   

6.
The primary and secondary current distribution study indicates the geometry of a thin electrolyte in a proton exchange membrane (PEM) fuel cell has a direct relation to the measured electrode polarization, thus making the positioning of the reference electrode and ohmic compensation critical. The different kinetic overpotentials on the electrodes can also affect the potential distribution and therefore affect the measurement accuracy. The measurement error can be significant for the fuel cell system with different kinetic overpotentials and with electrode misalignment. The measurement error for both hydrogen and direct methanol fuel cells (DMFC) has been analyzed over the current density region with no mass transfer effects. By using two reference electrodes, the measurement error can be substantially decreased for both anode and cathode measurement in a direct methanol fuel cell, and for the cathode measurement in a hydrogen/air fuel cell.  相似文献   

7.
Na+ is a likely intrinsic impurity in water and is a sort of common cation impurity in the direct methanol fuel cells (DMFCs). In this paper, the effect of Na+ on the DMFC electrochemical response is studied by adding Na+ into the methanol water solution fed in the anode of DMFC. The dynamic variation of cell voltage results shows that the DMFC performance degraded by the presence of Na+ impurity, and the higher concentration of Na+ impurity, the higher poisoning rate is observed. In the meantime, an external reference electrode is used to measure the potential and impedance of the cathode and anode. It is found that the dramatic decrease of the cell voltage is mainly ascribed to the increase of the cathode overpotential which is caused by Na+ exchange with protons in the cathode catalyst layer. The electrochemical impedance measurements suggest that the lack of available protons and low oxygen concentration at the cathode catalytic sites contributed to this degradation. Furthermore, the recovery strategy is introduced and it is found that the poisoned MEA could be partly recovered by immersing in 0.5 M H2SO4 solution for 4 h.  相似文献   

8.
《分离科学与技术》2012,47(8):1917-1932
Abstract

In order to study the influence of the proton exchange membrane thickness on the direct methanol fuel cell (DMFC) performance, sulfonated poly (ether ether ketone) (sPEEK) membranes with a sulfonation degree (SD) of 42% and thicknesses of 25, 40, and 55 µm were prepared, characterized, and tested in a DMFC. These polymeric membranes were tested in a DMFC at several temperatures by evaluating the current-voltage polarization curve, the open circuit voltage (OCV) and the constant voltage current (CV, 35 mV). The CO2 concentration at the cathode outlet was also measured. The thinnest sPEEK membrane proved to have the best DMFC performance, although having lower Faraday efficiency (lower ohmic losses but higher methanol permeation). In contrast, the thickest membrane presented improved properties in terms of methanol permeation (lower methanol crossover). DMFC tests results for this membrane showed 30% global efficiency, obtained with pure oxygen at the cathode feed.  相似文献   

9.
J. Guo  H. Zhang  J. Jiang  Q. Huang  T. Yuan  H. Yang 《Fuel Cells》2013,13(6):1018-1023
A passive and self‐adaptive direct methanol fuel cell (DMFC) directly fed with 20 M of methanol is developed for a high energy density of the cell. By using a polypropylene based pervaporation film, methanol is supplied into the DMFC's anode in vapor form. The mass transport of methanol from the cartridge to the anodic catalyst layer can be controlled by varying the open ratio of the anodic bipolar plate and by tuning the hydrophobicity of anodic diffusion layer. An effective back diffusion of water from the cathode to the anode through Nafion film is carried out by using an additive microporous layer in the cathode that consists of 50 wt.% Teflon and KB‐600 carbon. Accordingly, the water back diffusion not only ensures the water requirement for the methanol oxidation reaction but also reduces water accumulation in the cathode and then avoids serious water flooding, thus improving the adaptability of the passive DMFC. Based on the optimized DMFC structure, a passive DMFC fed with 20 M methanol exhibits a peak power density of 42 mW cm–2 at 25 °C, and no obvious performance degradation after over 90 h continuous operation at a constant current density of 40 mA cm–2.  相似文献   

10.
A new method of measuring current distribution in a polymer electrolyte fuel cell of active area 100cm2 has been demonstrated, using a printed circuit board (PCB) technology to segment the current collector and flow field. The PCB technique was demonstrated to be an effective approach to fabricating a segmented electrode and provide a useful tool for analysing cell performance at different reactant gas flow rates and humidification strategies. In this initial chapter of work with the segmented cell, we describe measured effects on current distribution of cathode and anode gas stream humidification levels in a hydrogen/air cell, utilizing a NafionTM 117 membrane and single serpentine channel flow fields, and operating at relatively high gas flow rates. Effects of the stoichiometric flow of air are also shown. A clear trend is seen, apparently typical for a thick ionomeric membrane, of lowering in membrane resistance down the flow channel, bringing about the highest local current density near the air outlet. This trend is reversed at low stoichiometric flows of air. At an air flow rate less than three times stoichiometry, the local performance starts to drop significantly from inlet to outlet, as local oxygen concentration drop overshadows the lowering in resistance along the direction of flow.  相似文献   

11.
To reduce the effect of methanol permeated from the anode, the structure of the cathode was modified from a single layer with Pt black catalyst to two-layer with PtRh black and Pt black catalysts, respectively. The current density of the direct methanol fuel cell (DMFC) using the two-layer cathode was improved to 228 mA/cm-2 compared to that (180 mA/cm-2) of the DMFC using the single layer cathode at 0.3 V and 303 K. From the cyclic voltammograms (CVs), it is indicated that the amount of adsorbates on the metal catalyst in the two-layer cathode is less than that of adsorbates in the single layer cathode after methanol test. In addition, the adsorbates were removed very rapidly by electrochemical oxidation from the two-layer cathode. It is suggested fromex situ X-ray absorption near edge structure analysis that the d-electron vacancy of Pt atom in the two-layer cathode is not changed by the methanol test. Thus, Pt is not covered with the adsorbates, which agrees well with the results of CV.  相似文献   

12.
W. Yuan  Y. Tang  X. Yang  Z. Wan 《Fuel Cells》2013,13(2):249-258
This work reports the performance characteristics of a liquid‐fed direct methanol fuel cell (DMFC) operated in both fully‐ and semi‐passive conditions. For the latter case, a blower is used to provide forced air convection at the cathode so as to reveal how and how much a passive DMFC suffers from its structural constraint and also the mass and heat transfer limitations. The results based on the fully passive operation suggest that the cell performance is greatly affected by the level of methanol concentration. In this study, 2 M performs the best when the cell uses different structural setups. Besides, the effects of ambient temperature and the cathode self‐heating mechanisms are also explored under a fully passive condition. For the semi‐passive operation, forced air convection is proved to be helpful in enhancing oxygen delivery but may lead to faster heat and water dissipation and thus significantly reduces the cell performance. An optimal blowing intensity is obtained when the blower operates at a half speed. When the cathode diffusion layer is removed, the effects of active air supply become weakened. Considering the limited performance improvement and parasitic losses caused by a blower, we believe the self‐breathing mode is still an attractive choice.  相似文献   

13.
Passive Direct methanol fuel cells (DMFC) are more suitable for charging small capacity electronic devices. In passive DMFC, the fuel and oxidant are supplied by diffusion and natural convection process on the anode and cathode sides respectively. Current collectors (CC) play a vital importance in fuel cell performance. This paper presents the combined impact of perforated and wire mesh current collectors (WMCC) on passive DMFC performance. Three types of open ratios of perforated current collectors (PCC), such as 45.40%, 55.40%and 63.40%and two types of wire mesh current collectors with open ratios of 38.70%and 45.40%were chosen for the experimental work. A combination of Taguchi-L9 rule is con-sidered. A combination of three PCC and two WMCC on both anode and cathode was used. Methanol con-centration was varied from 1 mol·L-1–5 mol·L-1 for nine combinations of PCC and WMCC. From the experimental results, it is noticed that the combination of PCC and WMCC with an open ratio of 55.40% and 38.70% incorporated passive DMFC produced peak power density at 5 mol·L-1 of methanol concentration. The passive DMFC performance was evaluated in terms of maximum power density and maximum current density. The combined current collectors of PCC and WMCC open ratios of 55.40%+38.70% have more stable voltage than single PCC of open ratio 63.40% at 4 mol·L-1 of methanol concentration.  相似文献   

14.
A five-cell 150 W air-feed direct methanol fuel cell (DMFC) stack was demonstrated. The DMFC cells employed Nafion 117® as a solid polymer electrolyte membrane and high surface area carbon supported Pt-Ru and Pt catalysts for methanol electrooxidation and oxygen reduction, respectively. Stainless steel-based stack housing and bipolar plates were utilized. Electrodes with a 225 cm2 geometrical area were manufactured by a doctor-blade technique. An average power density of about 140 mW cm–2 was obtained at 110 °C in the presence of 1 M methanol and 3 atm air feed. A small area graphite single cell (5 cm2) based on the same membrane electrode assembly (MEA) gave a power density of 180 mW cm–2 under similar operating conditions. This difference is ascribed to the larger internal resistance of the stack and to non-homogeneous reactant distribution. A small loss of performance was observed at high current densities after one month of discontinuous stack operation.  相似文献   

15.
R. Chen 《Electrochimica acta》2007,52(13):4317-4324
A passive direct methanol fuel cell (DMFC) with its cathode current collector made of porous metal foam was investigated experimentally. The measured polarization curves, constant-current discharging behavior and EIS spectra showed that the passive DMFC having the porous current collector yielded much higher and much more stable performance than did the cell having the conventional perforated-plate current collector with high methanol concentration operation. It was demonstrated that the improved performance for the porous current collector was attributed to: (i) the enhanced oxygen transport on the cathode as a result of a larger specific transport area, (ii) the increased operating temperature as a result of the lower effective thermal conductivity of the porous structure, and (iii) the faster water removal as a result of the capillary action in the porous structure, The experimental results also revealed that the porous current collector with a smaller pore size yielded higher performance as a result of the lower cell resistance.  相似文献   

16.
Methanol crossover is an important issue as it affects direct methanol fuel cell (DMFC) performance. But it may be controlled by selecting a proper flow field design. Experiments were carried out to investigate the effect of single, double and triple serpentine flow field configurations on a DMFC with a 25 cm2 membrane electrode assembly (MEA) with a constant open ratio. A three dimensional model was also developed for the anode of the DMFC to predict methanol concentration and cell current density distributions. Experimental and model results show that at lower methanol concentrations (0.25–0.5M), single serpentine flow field (SSFF) provides high peak power density, while a double serpentine flow field (DSFF) gives high peak power density at a high methanol concentration (1–2M). Single and double serpentine flow fields exhibit the same peak power density (33 mW cm−2) at 1M. But the cell efficiency of double serpentine flow field is 12.5% which is 3.5% point greater than single serpentine flow field. This is attributed to reduced mixed potential. triple serpentine flow field (TSFF) shows the lowest peak power density and cell efficiency, which is attributed to high mass transfer resistance.  相似文献   

17.
The potential of the oxygen cathode in a direct methanol fuel cell is strongly influenced by the crossover of methanol through the poly-electrolyte membrane. In the presence of methanol, oxygen is reduced at the cathode already at open circuit and the equivalent amount of methanol is oxidized. This results in the formation of a mixed potential, up to 200 mV negative to the original oxygen potential. In this work, the anode and cathode potentials of a DMFC are monitored in situ, using a dynamic hydrogen electrode (DHE). For the first time, the effect of crossover on the cathode potential as function of time is presented. Methanol and ethanol as fuels are compared. Changing from methanol to hydrogen, the influence of methanol crossover on the cathode potential can also be followed as function of current density. It is already known that, in addition to the consumption of fuel and oxygen with the formation of a mixed potential, a purely chemical reaction takes place at the platinum surface. A quantitative determination of the respective CO2 formation is presented here.  相似文献   

18.
A physico-chemical investigation of catalyst–Nafion® electrolyte interface of a direct methanol fuel cell (DMFC), based on a Pt–Ru/C anode catalyst, was carried out by XRD, SEM-EDAX and TEM. No interaction between catalyst and electrolyte was detected and no significant interconnected network of Nafion micelles inside the composite catalyst layer was observed. The influence of some operating parameters on the performance of the DMFC was investigated. Optimal conditions were 2 M methanol, 5 atm cathode pressure and 2–3 atm anode pressure. Power densities of 110 and 160 mW cm−2 were obtained for operation with air and oxygen, respectively, at temperatures of 95–100°C and with 1 mg cm−2 Pt loading.  相似文献   

19.
A complete microbial fuel cell (MFC) operating under continuous flow conditions and using Chlorella vulgaris at the cathode and Saccharomyces cerevisiae at the anode was investigated for the production of electricity. The MFC was loaded with different resistances to characterise its power capabilities and voltage dynamics. A cell recycle system was also introduced to the cathode to observe the effect of microalgae cell density on steady‐state power production and dynamic voltage profiles. At the maximum microalgae cell density of 2140 mg/L, a maximum power level of 0.6 mW/m2 of electrode surface area was achieved. The voltage difference between the cathode and anode decreased as the resistance decreased within the closed circuit, with a maximum open circuit voltage (infinite resistance) of 220 mV. The highest current flow of 1.0 mA/m2 of electrode surface area was achieved at an applied resistance of 250 Ω.  相似文献   

20.
Q. Ye  C. Xu 《Electrochimica acta》2006,51(25):5420-5429
Numerical simulation of a direct methanol fuel cell (DMFC) operating under discharging conditions is challenged by the difficulties in modeling of complicated liquid-gas two-phase flows and coupled electrochemical kinetics. Under open-circuit conditions, the net electrochemical reactions in the DMFC anode cease, but, owing to the methanol concentration difference between the anode and cathode, the mass transport of methanol remains, creating a mass transport process of methanol in a single-phase liquid flow with no electrochemical reactions in the DMFC anode. Consequently, an accurate simulation of mass transport of methanol under such open-circuit conditions becomes possible. In this work, we performed a 3D numerical simulation of mass transport of methanol in the DMFC anode under open-circuit conditions and obtained the mass flux of methanol through the porous layer for different values of permeability. We also measured the mass flux of methanol permeation from the anode flow field to the cathode under open-circuit conditions. The comparison between the numerical and measured mass flux of methanol made it possible to in situ determine the permeability of the typical commercial porous layer. Using this in situ determined permeability, we then investigated numerically the effect of methanol feed rates on mass transport and found that the in-plane under-rib convection plays an important role, even at low methanol feed rate, to make the reactant evenly distributed over the entire catalyst layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号