首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
双壁碳纳米管目前所面临的最大问题是如何实现均质的批量供应。在合成双壁碳纳米管的过程中,同时也会合成许多单壁(SWNTs)、多壁(MWNTs)品种。由于尺寸太小,如何将宝贵的双壁碳纳米管从其它品种中分拣出来就成了一个真正的难题。  相似文献   

2.
催化化学气相沉积法制备螺旋形多壁碳纳米管(英文)   总被引:1,自引:1,他引:0  
以乙炔为碳源、FeMo/MgO催化剂为模板,采用催化化学沉积法制备了螺旋状多壁碳纳米管(hs-MWC-NTs)。其中FeMo/MgO模板,由作为发泡和助燃剂的柠檬酸燃烧而制成。FeMo/MgO催化剂的XRD谱图揭示其具有微晶的通性。应用SEM、TEM和Raman光谱剖析了合成的炭材料。SEM和TEM观察表明获得了hs-MWC-NTs;Raman光谱的D峰和G峰确认了所获碳纳米管(CNTs)的结晶状态。结果表明:此法乃是合成直径10nm~20nm螺旋形多壁碳纳米管的最容易和简便方法。  相似文献   

3.
通过微波法快速合成了核.壳结构聚苯胺/多壁碳纳米管复合物。利用红外光谱(FT-IR)、X射线衍射(XRD)、透射显微镜(TEM)等测试方法,对复合物的分子结构和形貌进行了表征。TEM结果显示,掺杂态的聚苯胺近乎均匀的沉积在多壁碳纳米管上,沉积厚度约为10-15nm。循环伏安、恒流充放电和交流阻抗测试均表明所合成的复合物在1mol/L H2SO4电解质中具有良好的电化学电容性能,单电极比电容可达到200F/g,较之于纯多壁碳纳米管电极(18Fig)有显著提高。  相似文献   

4.
多壁碳纳米管复合材料在26.5~40 GHz频段的电磁性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用玻璃布作为分散载体制备多壁碳纳米管/玻璃纤维/环氧树脂复合材料,研究了在26.5~40 GHz频段,多壁碳纳米管的含量对复合材料的电磁参数及电导率的影响,同时测量了复合材料在该波段的电磁波反射率。研究结果表明:随多壁碳纳米管含量的增加,其介电常数实部和虚部随之增加,介电损耗角正切提高了4倍。复合材料的磁导率随多壁碳纳米管含量的提高变化不明显,呈弱磁性。复合材料的电导率随多壁碳纳米管含量的增加,由原来的绝缘体变为半导体。另外,在26.5~40 GHz频段内多壁碳纳米管复合材料对电磁波的隐身效果不好。   相似文献   

5.
利用化学气相沉积法,以Fe-Mo/Al_2O_3为催化剂,催化分解甲烷气体制备碳纳米管(CNTs).研究了温度,反应时间和气体流速对碳纳米管结构的影响.结果显示:温度是影响碳纳米管壁厚的关键参数.低温导致壁厚为2 nm~7 nm的多壁碳纳米管(MWCNTs)的生成.相对地,高温有利于双壁碳纳米管(DWCNTs)的生长,而更高的温度促使单壁碳纳米管(SWCNTs)的产生.进一步升高温度,得到了壁厚为3 nm~15 nm的MWCNTs和大的炭颗粒.  相似文献   

6.
多壁碳纳米管独特的结构和性质(纳米尺寸、介孔结构和大比表面积)使其成为催化剂的良好载体.侧重于催化领域的应用,结合改性的多壁碳纳米管为载体的催化剂在各催化反应中的应用,综述了催化领域中多壁碳纳米管载体的改性方法,指出针对不同的催化反应需采用不同的方法或多种方法相结合对碳纳米管进行表面改性修饰.  相似文献   

7.
采用差示扫描量热法(DSC)考察了聚苯硫醚(PPS)和PPS/多壁碳纳米管(MWCNTs)复合材料的等温结晶过程,通过Avrami方程得到等温结晶动力学参数。结果表明,少量(1%)羟基改性多壁碳纳米管(MWCNTs-OH)和羧基改性多壁碳纳米管(MWCNTs-COOH)的加入不会改变PPS的成核方式,但能提高它的结晶速...  相似文献   

8.
化学气相沉积法制备多壁碳纳米管研究   总被引:4,自引:1,他引:3  
根据实验结果 ,讨论了反应管直径、催化剂组分、反应温度及反应气体对多壁碳纳米管的产量和质量的影响。反应管直径大小将影响多壁碳纳米管的单位产量并对多壁碳纳米管质量产生影响。通过改变混合反应气体导入反应管的方式 ,可以提高多壁碳纳米管产量和改进质量。催化剂是影响多壁碳纳米管产量和质量的重要因素。在 70 0~80 0℃ ,反应温度仅对多壁碳纳米管的产量造成影响。  相似文献   

9.
多壁碳纳米管的表面乙烯基功能化   总被引:13,自引:0,他引:13  
本文采用浓硫酸/浓硝酸(3:1,v/v)组成的混酸体系在140℃时对多壁碳纳米管进行了氧化处理,并通过氧化后在多壁碳纳米管表面生成的羟基官能团与丙烯酰氯进行反应,制备了表面乙烯基功能化的多壁碳纳米管.强酸氧化后多壁碳纳米管的表面形貌通过透射电子显微镜进行了观察,结果表明氧化时间为60分钟时所得多壁碳纳米管的长度比较均匀,长径比较大,具有明显的两端开口结构.氧化后多壁碳纳米管表面的官能团通过核磁共振波谱仪进行了表征,结果表明混酸氧化处理60分钟后的多壁碳纳米管的管壁和管端生成了羟基等官能团.氧化后的多壁碳纳米管与丙烯酰氯充分反应后的产物的核磁共振氢谱图表明,反应产物为乙烯基功能化的多壁碳纳米管.  相似文献   

10.
空气中多壁碳纳米管的稳定性   总被引:1,自引:0,他引:1  
采用化学气相沉积法(CVD),以二甲苯为碳源,二茂铁为催化剂制备了多壁碳纳米管(MWCNTs)。考察了纯化后的多壁碳纳米管在空气中的结构稳定性,利用电子显微技术及体积电阻率法研究了多壁碳纳米管在空气中的特性变化。结果表明:多壁碳纳米管在空气中存放时会被缓慢氧化而变短,氧化程度随空气中放置时间的延长而增加,15d后几乎完全转化为无定形碳。体积电阻率随氧化程度不同而不同。多壁碳纳米管在空气中不稳定,容易氧化,需要密闭保存。  相似文献   

11.
张勇  刘畅  李峰  成会明 《新型炭材料》2006,21(4):307-314
采用聚乙烯醇(PVA)树脂炭化的方法,制备了PVA树脂炭包覆硅/不同纳米碳管复合材料,通过X-射线、高分辩电镜观察和电化学性能测试等手段比较研究了单壁、双壁和多壁纳米碳管作为弹性导电网络缓解硅在充放电过程中体积变化方面的效果。结果表明,单壁纳米碳管和双壁纳米碳管比多壁纳米碳管能够更好地缓解硅在循环过程中产生的结构和体积变化,这主要是因为其长径比大,缠裹效果更好。单壁纳米碳管和双壁纳米碳管具有相近的直径、长径比及宏观分布形式,但在循环过程中,双壁纳米碳管的结构稳定性好于单壁纳米碳管,进而其缓解硅结构变化的效果更好。  相似文献   

12.
Double-walled carbon nanotubes (DWCNTs) with high graphitization have been synthesized by hydrogen arc discharge. The obtained DWCNTs have a narrow distribution of diameters of both the inner and outer tubes, and more than half of the DWCNTs have inner diameters in the range 0.6–1.0 nm. Field electron emission from a DWCNT cathode to an anode has been measured, and the emission current density of DWCNTs reached 1 A/cm2 at an applied field of about 4.3 V/μm. After high-temperature treatment of DWCNTs, long linear carbon chains (C-chains) can be grown inside the ultra-thin DWCNTs to form a novel C-chain@DWCNT nanostructure, showing that these ultra-thin DWCNTs are an appropriate nanocontainer for preparing truly one-dimensional nanostructures with one-atom-diameter.   相似文献   

13.
A numerical model on nonlinear vibration of double-walled carbon nanotubes (DWCNTs) subjected to a moving nanoparticle and multi physical fields is proposed. DWCNTs are considered with the kinematic assumption of Euler–Bernoulli beam theory. The surrounding elastic substrate is simulated as Pasternak foundation, which is assumed to be temperature-dependent. Hamilton's principle, incremental harmonic balanced method, Galerkin, and time integration method with direct iteration are employed to establish the equations of motion of zigzag DWCNTs. The study reveals that for the weak van der Waals forces, DWCNTs have the positive and the negative deflections as if it vibrates under a moving nanoparticle.  相似文献   

14.
The precise atomic structure and relative atomic conformation of the individual carbon nanotubes comprising a double wall carbon nanotube (DWCNT) is determined. The DWCNTs are imaged using an aberration corrected high resolution transmission electron microscope (HRTEM) operating at 80 kV. Using processing in Fourier space images of the inner and outer tube of a double‐wall carbon nanotube (DWCNT) are analysed. Comparisons of these results with simulated HRTEM images enable the chiral indices and relative atomic correlation of the component tubes of non‐commensurate DWCNTs to be determined. This technique is used to reveal the presence of a defect in the inner tube of a (6, 6)@(18, 2) DWCNT.  相似文献   

15.
Controlling the covalent bonding of antibodies onto functionalized carbon nanotubes is a key step in the design and preparation of nanotube-based conjugates for targeting cancer cells. For this purpose, an anti-MUC1 antibody (Ab) is linked to both multi-walled (MWCNTs) and double-walled carbon nanotubes (DWCNTs) using different synthetic strategies. The presence of the Ab attached to the nanotubes is confirmed by gel electrophoresis and thermogravimetric analysis. Most importantly, molecular recognition of the antigen by surface plasmon resonance is able to determine similar Ab binding capacities for both Ab-DWCNTs and Ab-MWCNTs. These results are very relevant for the design of future receptor-targeting strategies using chemically functionalized carbon nanotubes.  相似文献   

16.
The interaction of double wall carbon nanotubes (DWCNTs) and the conducting polymer poly(3,4-ethylenedioxythiphene)/polystyrenesulfonate (PEDOT/PSS) was studied by in-situ Raman spectroelectrochemistry. The mixing of DWCNTs with PEDOT/PSS caused a partial doping of the outer tube of DWCNTs, which was indicated by the relative change of the Raman intensity of the DWCNTs features. On the other hand, the bands corresponding to inner tubes of DWCNTs and to the polymer were almost untouched by assembling both species into a composite. The in-situ Raman spectroelectrochemical experiments have shown that the changes in electronic structure of inner tubes of DWCNTs embedded in PEDOT/PSS matrix are dependent on the doping level. While at the low doping level of the composite, the Raman features of inner tubes of DWCNTs do not change significantly, at high doping level they reflect the changes caused by the applied electrochemical potential similar to those observed in the polymer-free DWCNTs.  相似文献   

17.
Single‐walled carbon nanotubes (SWCNTs) have been the focus of intense research, and the body of literature continues to grow exponentially, despite more than two decades having passed since the first reports. As well as extensive studies of the fundamental properties, this has seen SWCNTs used in a plethora of applications as far ranging as microelectronics, energy storage, solar cells, and sensors, to cancer treatment, drug delivery, and neuronal interfaces. On the other hand, the properties and applications of double‐walled carbon nanotubes (DWCNTs) have remained relatively under‐explored. This is despite DWCNTs not only sharing many of the same unique characteristics of their single‐walled counterparts, but also possessing an additional suite of potentially advantageous properties arising due to the presence of the second wall and the often complex inter‐wall interactions that arise. For example, it is envisaged that the outer wall can be selectively functionalized whilst still leaving the inner wall in its pristine state and available for signal transduction. A similar situation arises in DWCNT field effect transistors (FETs), where the outer wall can provide a convenient degree of chemical shielding of the inner wall from the external environment, allowing the excellent transconductance properties of the pristine nanotubes to be more fully exploited. Additionally, DWCNTs should also offer unique opportunities to further the fundamental understanding of the inter‐wall interactions within and between carbon nanotubes. However, the realization of these goals has so far been limited by the same challenge experienced by the SWCNT field until recent years, namely, the inherent heterogeneity of raw, as‐produced DWCNT material. As such, there is now an emerging field of research regarding DWCNT processing that focuses on the preparation of material of defined length, diameter and electronic type, and which is rapidly building upon the experience gained by the broader SWCNT community. This review describes the background of the field, summarizing some relevant theory and the available synthesis and purification routes; then provides a thorough synopsis of the current state‐of‐the‐art in DWCNT sorting methodologies, outlines contemporary challenges in the field, and discusses the outlook for various potential applications of the resulting material.  相似文献   

18.
构建了以双壁碳纳米管为导电通道、Al2O3和SiO2为绝缘层、Al和Si为栅极、Pd为源和漏电极的双底栅场效应晶体管,测量了晶体管的特性。观测到了双壁碳纳米管的三种典型的输运特性;观测到了两个底栅分别的调制作用;发现两个底栅的调制作用存在着显著的相互影响,使得场效应晶体管的特性明显不同于单栅器件,具备了逻辑“与”门的基本功能;利用能带图分析了双底栅器件的特性。  相似文献   

19.
Buckling of defective single-walled and double-walled carbon nanotubes (SWCNTs and DWCNTs, respectively) due to axial compressive loads has been studied by molecular dynamics simulations, and results compared with those of the perfect structures. It is found that single vacancy defect greatly weakens the carrying capacity of SWCNTs and DWCNTs, though it does slight harm to the effective elastic modulus of the tubes. The influence of defects on the buckling properties of nanotubes is related to the density of the defects, and the relative position of defects also plays an important role in buckling of DWCNTs. The van der Waals force among atoms in the inner and the outer tubes of short defective DWCNTs makes the critical buckling strain of DWCNTs greater than that of the inner tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号