首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
采用简化磨碎溶出法测试了硅灰(SF)掺量为30%~50%(质量分数,下同)、水胶比为1.4的超细水泥(SC)注浆材料结石体在不同龄期的pH值,探讨SF掺量、SiO2含量和C-S-H凝胶理论钙硅摩尔比对注浆材料pH值的影响,并测试了60%SC+40%SF低pH注浆材料的流变性能和力学性能,同时利用SEM、XRD、TG表征手段分析了结石体的水化产物和微观结构。结果表明,当SF掺量大于40%、SiO2含量大于50%、C-S-H凝胶钙硅摩尔比小于0.8时,结石体pH值小于11.00。萘系减水剂(SP)能显著降低浆液的马氏漏斗黏度,SP适宜掺量为1.6%。宾汉姆模型能够很好地描述浆液流变性能。水胶比的提高对结石体抗压强度有不利影响,因此水胶比不宜超过1.6。由于SF具有火山灰效应和稀释效应,养护180 d后结石体内不存在Ca(OH)2,其主要水化产物为低钙硅比的C-S-H凝胶和钙矾石。  相似文献   

2.
王涛  李望  朱晓波  燕旭东 《硅酸盐通报》2022,41(7):2368-2375
以Ca(OH)2为脱碱剂水热浸出赤泥脱碱,考察了Ca(OH)2掺量、反应温度、液固比对赤泥脱碱率的影响,同时对赤泥脱碱过程进行机理分析和浸出动力学分析。研究结果表明,在Ca(OH)2掺量为60%(质量分数)、反应温度为250 ℃、液固比为8 mL/g的条件下,赤泥脱碱率可达到96.3%。Ca(OH)2可有效脱除赤泥中的游离碱和结构碱,赤泥中的钙霞石和水钙铝榴石被分解,脱碱渣中新相铁钙榴石(水合的)是主要的衍射峰,并且赤铁矿的衍射峰明显减弱,方解石的衍射峰增强。该脱碱过程受固膜内扩散关键步骤控制,线性相关系数都大于0.97,特征常数n<1,表观活化能为5.20 kJ/mol。  相似文献   

3.
电石渣作为一种Ca(OH)2含量较高的工业副产品,可协同Na2CO3加速碱激发复合胶凝材料的水化过程。本文采用粉煤灰和矿粉作为复合胶凝材料的前驱体,探究不同电石渣(CCR)和Na2CO3质量比对复合胶凝材料的孔溶液pH值和力学性能影响。此外,通过水化热、X射线衍射、热重分析和扫描电子显微镜,探讨了CCR和Na2CO3协同激发作用对复合胶凝材料的水化过程和微观结构的影响。研究结果表明,随着CCR掺量的增加,复合胶凝材料的孔溶液pH值和力学性能均呈先增加后递减的趋势。当CCR和Na2CO3的掺量分别为6%和9%(质量分数)时,碱激发复合胶凝材料的3 d孔溶液pH值和28 d抗压强度分别达到最大值12.95和26.8 MPa。微观结构分析表明,在CCR和Na2CO3的协同激发作用下,碱激发复合材料能够生成更多的水化硅(铝)酸钙(C-(A)-S-H)凝胶,...  相似文献   

4.
碱性电解水具有强碱性、高活性、离子性和吸附性等优点,本文利用不同pH值(9.5、10.5、11.5)的碱性电解水制备粉煤灰砂浆,并在粉煤灰取代率为0%、15%及30%(质量分数)的条件下,系统研究了不同pH值碱性电解水对粉煤灰砂浆的工作性能、力学性能以及Ca(OH)2等水泥水化产物含量的影响规律,并利用XRD、SEM等微观试验对比分析了不同pH值的粉煤灰净浆的结构组成和微观形貌特征。试验结果表明:随着pH值的提高,相较于普通自来水粉煤灰砂浆,碱性电解水粉煤灰砂浆的流动度、抗压强度和抗折强度逐渐提高,水化产物Ca(OH)2含量逐渐降低。当碱性电解水pH值为10.5,粉煤灰取代率为15%时,碱性电解水粉煤灰砂浆的早期强度和流动度的改善效果达到最佳,28 d的抗压强度和抗折强度较普通水砂浆分别提高了8.4%和12.5%。同时,相较于普通自来水净浆,不同pH值的碱性电解水净浆的团簇化和颗粒化均表现得更加明显,这对于促进水泥水化进程,提高砂浆流动性,激发粉煤灰早期活性起到了积极作用,除了生成更多的C-S-H凝胶体和Ca(OH)2等水化产物以外,还生成了钾长石等其他水化产物。  相似文献   

5.
碱性电解水具有高活性、强碱性、强离子性和吸附性等优点。利用碱性电解水作为拌合水制备不同取代率的粉煤灰混凝土,系统研究碱性电解水对粉煤灰混凝土的工作性能、力学性能和抗氯离子渗透性能的影响,并结合X射线衍射仪(XRD)、扫描电镜(SEM)和差热分析试验(TG/DTA)分析碱性电解水混凝土的水化产物及微观结构形貌。结果表明:碱性电解水能够促进混凝土中水泥早期水化反应,改善混凝土的工作性能,除了生成更多的C-S-H凝胶体和Ca(OH)2等水化产物外,还生成了钾长石,降低了孔隙率,提高结构密实度,改善了混凝土的力学性能和抗渗性能;同时,碱性电解水在一定程度上可以激发粉煤灰的早期活性效应,使得粉煤灰玻璃体网络结构加速断裂,粉煤灰中的SiO2和Al2O3大量溶出与混凝土中的水化产物Ca(OH)2发生二次反应,生成更多的硅酸钙和铝酸钙等胶凝性产物。相较于普通自来水混凝土,当粉煤灰取代率为20%和30%(质量分数)时,碱性电解水混凝土的56 d抗压强度分别增长了8.7%和3.5%。  相似文献   

6.
以孙家壕高铝煤为实验煤样,将煤样在800℃制成煤焦,采用热重分析仪(TGA)研究了钙添加剂对孙家壕煤焦Na2CO3催化水蒸气气化反应性的影响。结果表明:Ca(OH)2对孙家壕煤焦水蒸气气化具有催化作用,在对孙家壕煤焦进行800℃Ca(OH)2催化水蒸气气化时,Ca(OH)2的负载量在15%(质量分数,下同)时达到饱和;通过比较Na2CO3和Ca(OH)2对孙家壕煤焦800℃水蒸气气化的催化活性,发现Na2CO3的催化气化活性比Ca(OH)2的催化气化活性大,负载5%Na2CO3和10%Ca(OH)2的孙家壕焦的800℃水蒸气气化反应性相等;添加10%Ca(OH)2添加剂可以使负载10%Na2CO3的孙家壕煤焦在700℃...  相似文献   

7.
为了拓展氯氧镁水泥(MOC)材料的应用领域,以盐湖提钾肥副产物水氯镁石、轻烧氧化镁和粉煤灰为胶凝材料,制备了不同粉煤灰掺量的氯氧镁水泥混凝土(MOCC)。研究了粉煤灰掺量对MOCC抗压强度、物相组成、微观形貌和孔结构的影响。结果表明:随着粉煤灰掺量的增加,MOCC的抗压强度逐渐降低,当粉煤灰掺量为40%(质量分数)时,其300 d抗压强度降低至39.99 MPa,降低了22.52%。MOCC的主要水化产物为5Mg(OH)2·MgCl2·8H2O(5·1·8)和Mg(OH)2,掺加粉煤灰并没有产生新的晶相。掺入粉煤灰增加了MOCC的孔隙率和有害孔体积,从而降低了其抗压强度。采用相同水灰比制备了普通硅酸盐水泥混凝土,抗压强度对比测试结果表明:掺40%的粉煤灰MOCC的抗压强度虽然比未掺粉煤灰MOCC抗压强度低,但仍比普通硅酸盐水泥混凝土300 d龄期的抗压强度(33.42 MPa)高出19.66%,说明MOCC比普通硅酸盐水泥混凝土具有较高的抗压强度。  相似文献   

8.
为实现工业废料的二次利用,将电石渣部分替代粉煤灰掺入碱激发粉煤灰-矿渣(AAFS)中,制备碱激发粉煤灰-矿渣-电石渣复合凝胶材料(AAFSC)。本文考察了不同电石渣掺量下AAFSC的抗碳化性能,并通过压汞测试、热重分析、X射线衍射仪和扫描电子显微镜等分析材料的微观结构。结果表明:经快速碳化作用,AAFSC的孔隙结构会向有害孔发展,抗压强度明显衰减;AAFSC在碳化前中期的抗碳化性能优于AAFS,但随碳化龄期延长,这种优势逐渐减小甚至消失;试验推荐的电石渣掺量质量分数为6%,此时AAFSC在碳化前中期具备最佳抗碳化性能,且在碳化后期仍具有最大抗压强度39.92 MPa;随电石渣掺量增加,AAFSC中Ca(OH)2含量增加,这些Ca(OH)2在碳化过程中被消耗,生成了方解石、霰石等碳酸盐。  相似文献   

9.
将添加有Ca(OH)2的污泥在管式炉中焚烧,通过原子吸收分光光度计(AAS)测定灰渣中Pb的含量,分析Ca(OH)2对灰渣中Pb含量的影响。结果表明:在污泥焚烧过程中,Pb的挥发率随焚烧温度呈先上升后下降再上升趋势,结合X射线衍射(XRD)分析发现,这主要是由于硅铝酸盐对Pb的固留作用和挥发动力学的相互影响。添加Ca(OH)2后,污泥灰渣中Pb的含量有明显的降低,而且随着Ca(OH)2添加量的增加,污泥灰渣中Pb的含量持续降低,表明Ca(OH)2的添加,促进Pb的挥发,减少Pb在灰渣中的含量。将灰渣中Pb的形态分为浸出态和残渣态,通过分析X射线衍射(XRD)和灰渣中两种形态Pb的变化规律,得到Ca(OH)2促进Pb挥发的机理主要是:添加的钙元素与硅铝酸盐反应,降低了硅铝酸盐与Pb反应的概率,从而使Pb转变为挥发形态的可能性增大,因此提高了挥发率。  相似文献   

10.
流态固化土基本性能指标包括湿密度、泌水率、流动值和抗压强度。为探究电石渣和脱硫灰复掺对流态固化土基本性能及微观特性的影响,使用同掺量的电石渣和脱硫灰单一替代以及同时替代Ca(OH)2和CaSO4(分析纯),测试其对流态固化土的流动值、泌水率、抗压强度等的影响,采用XRD及SEM对比分析两种分析纯试剂和两种固废制备的试件28 d的物相组成及微观形貌。结果表明,使用电石渣和脱硫灰单掺或复掺制备的流态固化土的流动性均优于使用Ca(OH)2和CaSO4复掺流态固化土,泌水率均满足要求,虽然其28 d抗压强度小于Ca(OH)2和CaSO4复掺试样,但是能满足大部分应用场景抗压强度要求。  相似文献   

11.
张毅  邓边员  张延杰  桂跃 《硅酸盐通报》2021,40(11):3712-3722
在岩溶地区进行灌注桩施工时,注浆法可有效改善混凝土易流失、断桩、桩身孔洞等问题,但传统注浆材料成本较高且性能过剩,而且施工现场往往存在大量弃渣需要妥善处理。鉴于此,提出利用红黏土弃渣为基材,以水泥、粉煤灰为主固化剂,辅以水玻璃,制备新型注浆材料。通过正交试验,探究各组分对浆液关键性能指标的影响,确定最佳配比,并对最优配比下浆液结石体的微观结构进行分析。结果表明:水土比是影响浆液性能的主控因素;水泥掺量对浆液结石体的强度影响最大;粉煤灰可以增加浆液结石率,并提高结石体的后期强度;水玻璃主要起到加速凝结的作用。推荐的最佳配比为水土比0.6(质量比),水泥掺量10%(质量分数),粉煤灰掺量12%(质量分数),水玻璃掺量1.1%(质量分数)。经综合分析,该浆液具有流动性好、填充性好、强度适中、造价低廉等特点,适合工程大规模使用。  相似文献   

12.
为了得到碱渣-粉煤灰-硅酸钠溶液体系新型注浆材料各组分的作用和固化机理,考虑不同固体质量配比和养护条件,通过温度变化、固化收缩、抗压强度和傅里叶变换红外光谱试验对比研究不同体系的差别.结果表明:碱渣中Ca(OH)2和粉煤灰中的CaO遇到硅酸钠溶液时发生放热反应;浆液早期抗压强度由碱渣中CaCl2、Ca(OH)2和CaSO4与硅酸钠溶液反应生成水化硅酸钙凝胶决定,由于粉煤灰受碱激发生成了硅铝酸盐聚合物凝胶使得注浆液7~50 d抗压强度有大幅增长;FTIR试验证实了水化硅酸钙凝胶(C-S-H)和硅铝酸盐凝胶(N-A-S-H)的存在;原材料组分保证了浆液收缩程度小、流动性好、不易离析、结石率大等优点.  相似文献   

13.
宋苗苗  朱鹏  徐桂中  王凤珍  唐鹏 《硅酸盐通报》2020,39(12):3945-3951
为明确钙质促凝剂添加对固化高含水率工程废浆强度性状的影响,对含钙质促凝剂的固化工程废浆开展一系列无侧限抗压试验,研究不同促凝剂性质及掺量下固化工程废浆强度性状的变化。结果表明:加入钙质促凝剂将显著增强固化工程废浆的无侧限抗压强度qu,适宜的促凝剂掺量可将固化工程废浆的强度提高1倍左右;不同养护龄期下固化工程废浆的qu随CaCl2掺量的增加先增大后降低,随Ca(OH)2掺量的增大则表现出先增大后减小再增大的变化趋势。和CaCl2相比,添加Ca(OH)2引起固化工程废浆强度的增加相对较小。此外,固化工程废浆的破坏应变εf和变形系数E50随促凝剂性质和掺量不同也是变化的。对于研究所用工程废浆和促凝剂,固化处理后土体的E50≈(30~100)qu。  相似文献   

14.
垃圾焚烧飞灰中的氯含量影响其在水泥窑协同处置生料中的占比,因此需要对飞灰做脱氯处理。利用XRD对飞灰氯元素的存在形态研究表明:氯元素以水溶性氯和非水溶性氯2种形态存在于飞灰中,炉排炉飞灰的水溶性氯化物为CaCl2·Ca(OH)2·H2O、CaClOH、CaCl2·2H2O、KCl和NaCl,非水溶性氯化物为AlOCl和Ca10(Si2O72(SiO4)Cl2(OH)2等;流化床飞灰的水溶性氯以CaCl2·2H2O和KCl形式存在,非水溶性氯以AlOCl、Ca10(Si2O72(SiO4)Cl2(OH)2和Ca4OCl6等形式存在。对水洗脱除水溶性氯的研究结果显示:对于炉排炉飞灰,控制液固比(mL/g,下同)为10+4+2、3次常温水洗,水溶性氯脱除率达97.01%;对于流化床飞灰,控制液固比组合6+6+4、3次常温水洗,水溶性氯脱除率达99.17%;酸、碱洗及高温煅烧均能降低飞灰非水溶性氯含量,其中煅烧处理后的炉排炉飞灰残氯质量分数为0.36%、流化床飞灰为0.45%。  相似文献   

15.
针对当前城市垃圾焚烧飞灰(MSWI)处置费用高昂、环境污染严重等问题,提出一种利用微生物矿化原理制备免烧结垃圾焚烧飞灰砖的方法。通过在飞灰砖固结体中加入微生物菌液,利用微生物诱导碳酸盐沉积原理,实现飞灰中重金属的固化和稳定化。本文以垃圾焚烧飞灰、Ca(OH)2、砂子、微生物菌液为原材料,通过单因素试验,探究了制备微生物飞灰砖最优的飞灰掺量、菌液浓度、营养液中钙离子浓度。试验结果表明,当飞灰掺量为40%(质量分数),菌液OD600值为0.60,营养液中钙离子浓度为0.30 mol/L时,飞灰砖力学性能最优。此时规格为100 mm×100 mm×50 mm免烧结微生物飞灰砖的干密度为1 937.40 kg/m3,抗压强度达到33.90 MPa,并且重金属浸出浓度满足限值要求,实现垃圾焚烧飞灰的资源化利用。  相似文献   

16.
为了提高粉煤灰的资源化利用,在m(漂珠):m(氢氧化铝):m(V2O5):m(AlF3)=45:55:4:3的混合料中分别添加不同量(每100 g混合料分别添加0、5、10、20、30 g)的粉煤灰细粉,以PVA溶液为结合剂,经干料混匀、泥料搅拌、泥料陈腐、挤制成型、1100℃保温2 h烧成制备莫来石试样,然后检测其致...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号