首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为增强聚偏氟乙烯(PVDF)膜的疏水性能和膜选择性能,在PVDF基膜材料中添加了不同质量的聚二甲基硅氧烷(PDMS),制备了PVDF-PDMS共混复合膜。考察了PDMS、PVDF质量比对复合膜结构性能的影响,并用扫描电子显微镜、比表面积孔径分析仪、接触角测量仪、傅里叶变换红外光谱仪、X射线光电子能谱仪等仪器对复合膜进行了表征;采用低含量苯酚水溶液研究了复合膜的渗透蒸发性能。结果表明,随着PDMS添加量的增加,复合膜的疏水性能、苯酚渗透通量以及分离因子都会逐渐增大,复合膜渗透蒸发性能明显优于未改性膜;在PDMS、PVDF质量比为1:10时,复合膜具有最好的形态结构,表面接触角达到82.92°,苯酚渗透通量为39.31 g/(m~2·h),分离因子增加到4.68。  相似文献   

2.
疏水白炭黑填充PDMS-PA复合膜的渗透汽化性能   总被引:3,自引:1,他引:3  
在聚二甲基硅氧烷(PDMS)层中引入疏水性气相法白炭黑,制成填充的硅橡胶-聚酰胺(PDMS-PA)多层复合膜;通过扫描电镜(SEM)观察了填充复合膜的截面形态,并考察了填充复合膜的渗透蒸发性能。结果发现,以PDMS层的质量为基准,填充少量的疏水性气相法白炭黑就能显著影响复合膜的渗透性能;填充复合膜的渗透通量随着白炭黑用量的增加而增加,而选择性则没有显著降低。在40℃、乙醇质量分数为5%的乙醇水溶液中,白炭黑质量分数为20%的PDMS-PA复合膜的渗透通量达到2 400 g/m2.h,比非填充复合膜的渗透通量高1倍多;而分离因子为7,稍低于非填充复合膜的8.5。此外,填充复合膜和非填充复合膜的分离性能对温度和浓度变化的依赖关系一致。  相似文献   

3.
为探究出适合分离水中的乙酸正丁酯和乙酸乙酯的新型渗透汽化膜材料,选用沸石ZSM-5 对聚二甲基硅氧烷(PDMS)材料进行填充改性,以聚偏氟乙烯(PVDF)为支撑层,采用刮涂法制备PDMS/ZSM-5/PVDF复合膜渗透汽化分离水中的乙酸正丁酯和乙酸乙酯。采用SEM、接触角测量仪、FTIR、TGA和XRD等对膜材料物理化学性能进行表征,考察了膜材料的溶胀行为及渗透汽化性能。结果表明,ZSM-5在 PDMS 膜中分散均匀,且没有发生化学作用,并提高了膜材料的疏水性和热稳定性。随着ZSM-5添加量的增加,膜在乙酸正丁酯和乙酸乙酯的溶胀度和待分离组分在膜材料中的扩散速率不断增加。随着进料浓度和温度的增加,渗透通量不断增大,分离因子先增大后减小。随着ZSM-5在PDMS/ZSM-5/PVDF复合膜中含量的增加,总渗透通量增加,而分离因子呈现先增加后减小的趋势。当添加量为10%(质量)时,分离因子达到最大值。对于乙酸正丁酯/水体系,渗透通量和分离因子最大值分别为319 g·m -2·h -1和131;而对于乙酸乙酯/水体系,渗透通量和分离因子最大值分别为1385 g·m -2·h -1和121。  相似文献   

4.
通过相转化法制备PVDF多孔支撑膜,在其上涂覆致密的PDMS分离层制备得到PVDF/PDMS复合膜,用于丁醇的分离纯化。以丁醇水溶液为原料液,流速为1.6 L·min-1,丁醇浓度为15 g·L-1,温度为37℃时,PVDF/PDMS复合膜的总通量为158.2 g·m-2·h-1,分离因子为17.3。向丁醇水溶液中按丁醇:丙酮:乙醇比例为6:3:1添加丙酮和乙醇模拟发酵液,PVDF/PDMS复合膜的总通量升高到189.5 g·m-2·h-1,分离因子降低到14.8。进一步考察了以丙酮-丁醇-乙醇(ABE)发酵液为原料液的渗透气化膜分离性能,发酵液中不存在菌体时,PVDF/PDMS复合膜的总通量和分离因子分别为120.2 g·m-2·h-1和19.7,而菌体存在时,复合膜的总通量和分离因子分别为122.1 g·m-2·h-1和16.7。与PDMS均质膜相比,PVDF/PDMS复合膜在丁醇分离过程中的分离性能有了显著的提升,具有潜在的应用价值。  相似文献   

5.
将纳米级白炭黑填充于PDMS制备了白炭黑填充PDMS/PVDF复合膜,采用红外(FT-IR)、热失重(TGA)和接触角(CA)等方法对填充复合膜进行了分析和表征,并采用纳滤的方法系统研究了复合膜对大豆油/己烷混合油的分离性能。结果表明,白炭黑填充能有效促进PDMS的交联,提高PDMS的疏水性、热失重温度以及对溶剂的稳定性;白炭黑填充量增加使复合膜渗透通量降低,但截留率从96%提高到98%;随溶液浓度增加,渗透通量和截留率同时降低;随温度的升高,渗透通量上升,截留率降低。大豆油和己烷在膜中的传质特性可用不完全的溶解-扩散模型描述,溶液渗透压实验值与计算值符合较好。  相似文献   

6.
用响应面优化法优化了乙烯基封端PDMS/PVDF渗透汽化透醇膜的制膜条件,研究了硅橡胶浓度、B/A质量比、交联温度和交联时间对膜性能的影响,拟合了分离因子、渗透通量与四因素之间的回归方程,并用方差分析法考察了四因素的主效应、二次效应以及相互作用效应对复合膜的分离因子与渗透通量的影响。研究发现,硅橡胶浓度对膜的分离因子与渗透通量的影响最为显著,交联时间对分离因子几乎没有影响。通过对回归方程的优化分析得知,在料液乙醇浓度为10%(wt),操作温度40℃条件下,当硅橡胶浓度为93%(wt),B/A质量比为0.08,交联温度为100℃,交联时间为13.83 h时,膜的综合分离性能达到最佳,此时分离因子与渗透通量预测值分别为9.47、77.57 g(m2 h)1,渗透侧乙醇浓度达到51.3%(wt)。回归方程的验证实验结果表明,回归方程的估计值与实验值较为吻合,可用于乙烯基封端的PDMS/PVDF复合膜的渗透汽化性能的预测与优化。  相似文献   

7.
杜广庆  陈丽杰  薛闯  白凤武 《化工学报》2014,65(9):3499-3504
通过相转化法制备PVDF多孔支撑膜,在其上涂覆致密的PDMS分离层制备得到PVDF/PDMS复合膜,用于丁醇的分离纯化。以丁醇水溶液为原料液,流速为1.6 L·min-1,丁醇浓度为15 g·L-1,温度为37℃时, PVDF/PDMS复合膜的总通量为158.2 g·m-2·h-1,分离因子为17.3。向丁醇水溶液中按丁醇:丙酮:乙醇比例为6:3:1添加丙酮和乙醇模拟发酵液,PVDF/PDMS复合膜的总通量升高到189.5 g·m-2·h-1,分离因子降低到14.8。进一步考察了以丙酮-丁醇-乙醇(ABE)发酵液为原料液的渗透气化膜分离性能,发酵液中不存在菌体时,PVDF/PDMS复合膜的总通量和分离因子分别为120.2 g·m-2·h-1和19.7,而菌体存在时,复合膜的总通量和分离因子分别为122.1 g·m-2·h-1和16.7。与PDMS均质膜相比,PVDF/PDMS复合膜在丁醇分离过程中的分离性能有了显著的提升, 具有潜在的应用价值。  相似文献   

8.
制备以聚酯(PET)为支撑层,白炭黑填充的聚二甲基硅氧烷(PDMS107)为皮层的硅橡胶复合膜,并以乙醇水物系为料液,对比分析白炭黑增强硅橡胶复合膜的渗透蒸发分离性能,分离因子比空白膜有所提高,在乙醇浓度为3%~5%时,分离因子可达16.09,渗透通量为75.39 g/m2·h;测定填充白炭黑硅橡胶复合膜的拉伸强度,结果表明:拉伸强度可达1.828 MPa,相当于空白膜(0.368 MPa)的5倍.  相似文献   

9.
分别将四甲基二乙烯基二硅氧烷(DVTMS)和2,4,6,8-四甲基-2,4,6,8-四乙烯基环四硅氧烷(TMTV)与交联剂聚二甲基硅氧烷(PDMS)的B组分(B)聚合形成两种聚硅氧烷DB和TB,涂覆于聚丙烯腈(PAN)表面形成过渡层DB(TB)/PAN,涂覆PDMS分离层得3层结构的PDMS/DB(TB)/PAN渗透汽化复合膜,用于1%正丁醇水溶液的分离,表征了过渡层的结构,研究了硅氧烷/交联剂比和膜液中固形物含量对复合膜渗透汽化性能的影响.结果表明,在分离层和过渡层总厚度相同的情况下,涂覆DB和TB有效提高了膜的渗透汽化性能,最佳膜配方DVTMS:B=3:1(ω)及DB含量5%(ω)时,PDMS/DB/PAN膜的分离因子为40.96,渗透通量为628.40 g/(m2?h);TMTV:B=1:1(ω)及TB含量为3%(ω)时,PDMS/TB/PAN膜的分离因子为41.58,渗透通量为540.00 g/(m2?h).PDMS/DB/PAN膜和PDMS/TB/PAN膜的分离因子分别比相同分离层厚度的PDMS/PAN膜的分离因子提高8.5%和10.2%,渗透通量提高29.5%和11.3%.  相似文献   

10.
肖俊丽  贺高红  代岩  李皓  曾庆瑞  黄湛 《化工进展》2014,(11):3031-3036
膜分离技术具有投资小、设备简单等优点,目前广泛应用于CO2分离等方面,膜材料是膜分离技术的核心。研究表明,聚合物中醚氧基团的存在可有效提高膜对CO2的渗透速率和选择系数。聚乙二醇二甲醚(PEGDME)结构中含有丰富的醚氧基团,同时端基空间位阻提供了较高的CO2扩散系数。本文以液态PEGDME为添加剂,聚偏氟乙烯(PVDF)为共混膜材料,利用聚丙烯(PP)多孔膜为支撑,通过溶剂蒸发法制备出具有良好分离性能的PEGDME-PVDF/PP共混复合膜。结果显示,随着PEGDME含量的升高,复合膜对CO2的渗透速率和CO2/N2选择系数均呈上升趋势,当PEGDME共混含量达到50%时,CO2的渗透速率为42.9GPU,CO2/N2选择性为47.5;随着PVDF浓度的增加,CO2的渗透速率呈下降趋势,CO2/N2的选择系数则缓慢上升;适当降低溶剂蒸发温度,PVDF结晶度降低,有助于提高膜性能;当溶剂蒸发温度为30℃时,PEGDME-PVDF膜对CO2的渗透速率达到84.7GPU,CO2/N2的选择系数达到47.2。  相似文献   

11.
用十六烷基三甲基溴化铵(CTAB)对膨润土进行柱撑改性,并对改性前后的膨润土进行吸附实验及红外测定。将改性后膨润土置于填充聚醚共聚乙酰胺(PEBAX)聚合物溶液中,以聚偏氟乙烯(PVDF)超滤膜为支撑膜,制备复合膜,考察复合膜在模拟汽油(噻吩/正庚烷)中的溶胀性能,并进行渗透汽化实验,研究膜的分离性能。利用SEM考察膜的形貌结构。结果发现:30℃下,溶胀度随噻吩质量分数的增加而升高,15 min后达溶胀平衡,并且在填充量为20%时最大。渗透汽化结果表明:在料液温度为30℃,噻吩质量分数为1 100μg/g时,CTAB填充量为20%的PEBAX/PVDF复合膜的渗透通量和硫富集因子分别为2.81 kg/(m2·h)和4.65。  相似文献   

12.
通过浸渍喷涂法制备了聚偏二氟乙烯/炭黑/聚二甲基硅氧烷(PVDF/CB/PDMS)复合光热薄膜,并对其光热转换性能、蒸发性能以及循环性能进行了研究。结果表明:PVDF/CB和PVDF/CB/PDMS均可以吸收90%的太阳光,表面温度达到48℃。PVDF/CB-0.25/PDMS上层疏水下层亲水结构可以有效提高蒸发性能,1 h内蒸发量达到1.89 kg/m2。在模拟海水淡化实验中,PVDF/CB-0.25/PDMS的蒸发量达到1.82 kg/m2。PDMS的加入,使PVDF/CB-0.25/PDMS在多次循环下仍能保持稳定的蒸发性能,增加经济效益。因此,制备的PVDF/CB/PDMS光热膜可以有效地用于海水淡化领域。  相似文献   

13.
为提高膜的抗污染能力,对聚偏氟乙烯(PVDF)平板膜进行表面涂覆改性,得到超疏水PVDF平板膜,再将超疏水PVDF平板膜进行表面亲水化改性,制备出超疏水/亲水复合PVDF膜。当PVDF的质量浓度为2%、聚乙二醇(PG)的质量浓度为39%、涂敷液温度为50℃、蒸发时间为10 s、凝固浴温度为60℃时,超疏水PVDF平板膜接触角达到154.8°。表面亲水改性制得的PVDF超疏水/亲水复合膜的接触角为41°。然后研究了超疏水PVDF平板膜和PVDF超疏水/亲水复合膜的抗膜污染性能。结果显示,超疏水PVDF平板膜具有优良的抗无机污染性能和一定的抗有机污染性能;PVDF超疏水/亲水复合膜不仅具有优良的抗无机污染性能,而且其抗复合污染性能尤其是抗有机污染性能得到明显提升,为进一步构建高性能膜蒸馏抗污染膜提出了一个可行的技术方向。  相似文献   

14.
制备了以聚偏氟乙烯PVDF超滤膜为底膜的聚四氟乙烯PTFE超细粉体填充聚二甲基硅氧烷PDMS复合膜,并用于氯仿水溶液体系的渗透汽化。采用SEM和接触角分析研究了膜结构及表面性能。研究了PTFE:PDMS质量比、料液流速、料液浓度对渗透汽化性能的影响;采用串联阻力模型分析了渗透汽化氯仿水溶液的传质过程。研究表明,填充PTFE提高了PDMS膜渗透汽化性能;流量大于200 mL min 1时渗透汽化传质阻力主要由膜阻力控制;在流速低于200 mL min 1时,浓差极化产生的氯仿传质边界层阻力最大可达膜阻力的29倍。  相似文献   

15.
制备了一系列双组分加成型硅橡胶(PDMS)膜及ZSM-5沸石填充PDMS复合膜,用于渗透汽化法分离甲醇,碳酸二甲酯混合物,考察了C6-530双组分硅橡胶A/B组分比例、后处理温度、沸石填充浓度、操作温度对渗透汽化分离性能的影响.  相似文献   

16.
以聚醚共聚酰胺(PEBAX)为分离膜材料,聚内烯腈(PAN)超滤膜为支撑层,纳米气相二氧化硅(n-Si O2)颗粒为填充物,分别制备了PEBAX/PAN复合膜及n-Si O2-PEBAX/PAN填充型复合膜,旨在通过渗透汽化分离吡啶。采用扫描电镜(SEM)、X射线衍射(XRD)、傅里叶红外光谱(FT-IR)对复合膜进行表征,表明n-Si O2与聚合物只是物理混合。以吡啶/正庚烷混合物为模拟溶液,考察膜的溶胀及渗透汽化分离性能。溶胀实验结果表明:膜溶胀度随料液吡啶含量及温度的增加而增大。渗透汽化实验结果表明:n-Si O2填充量为10‰(wt)时总渗透通量最大,填充量为5‰(wt)时分离因子最大。总渗透通量和分离因子都随料液吡啶浓度增大而增加;渗透汽化操作温度升高,总渗透通量增大,而分离因子减小。当填充量为5‰(wt)、温度为30℃、以及料液吡啶含量为5000?g?g?1时,Pn5膜的总渗透通量为5.05 kg?m?2?h?1,分离因子为3.39。研究结果表明,Si O2-PEBAX/PAN复合膜对吡啶有较好的富集作用。  相似文献   

17.
PDMS/PS复合膜的渗透蒸发性能的研究   总被引:3,自引:0,他引:3  
制备了高性能的PDMS/PS复合膜,可将水溶液中苯的浓度由0.2~0.8×10-3kg·kg-1浓缩至70%~96%(质量分数),膜的渗透通量为0.10~0.4 kg·m-2·h-1,分离因子可达到20 000;通过渗透蒸发实验,考察了料液浓度、料液流速、料液温度和膜下游压力等操作条件对PDMS/PS复合膜渗透蒸发性能的影响;考察了活性层厚度和基膜结构分别对活性层传质阻力、基膜传质阻力的影响.并确定总传质阻力与活性层厚度的关系式和基膜传质阻力的经验公式.在此基础上得到了渗透蒸发的传质模型,计算结果与实验结果符合良好.  相似文献   

18.
利用硬脂酸对纳米γ-Al_2O_3改性,分别制备了聚醚共聚酰胺(PEBAX)均质膜、填充膜、复合膜以及填充型复合膜四种分离膜,探讨了膜在苯胺/正庚烷体系中的溶胀性能和渗透汽化性能。利用FT-IR、XRD分别考察了改性前后γ-Al_2O_3颗粒官能团和晶体结构的变化情况,通过SEM观察膜的形貌结构。溶胀实验结果表明:随着料液中苯胺浓度和料液温度的升高,溶胀度均持续增大,在48 h时达到溶胀平衡,填充量为2%(wt)时填充膜的溶胀效果最好;渗透汽化实验结果表明:膜的渗透通量和分离因子均随料液中苯胺浓度和料液温度的升高而持续增大,填充型复合膜的综合性能最优,其填充量为2%(wt)时分离性能最佳,当苯胺浓度为5000μg×g~(-1)、温度为70℃时,膜的渗透总通量为5.64 kg×m~(-2)×h~(-1),分离因子为3.07。  相似文献   

19.
以MFI疏水沸石作为填充剂,制备了PDMS(聚二甲基硅氧烷)/PTFE沸石填充复合膜,并利用SEM、XRD等手段对其进行了表征。以环己酮/水溶液为分离实验体系,考察了沸石填充量对PDMS/PTFE沸石填充复合膜渗透汽化性能的影响。  相似文献   

20.
制备了疏水性纳米SiO2填充聚二甲基硅氧烷(PDMS)渗透汽化膜,研究了其溶解-扩散性能,计算了复合膜的溶解度参数(δM)及乙醇渗透系数(PE)。结果表明,填加SiO2提高了PDMS膜的乙醇溶解度(SE),SiO2填加量为10%(质量分数,下同)时,复合膜在30℃时的SE为0.0064,而未填加时仅为0.0026;PE值随SiO2含量的增加呈先增加后减小的趋势,SiO2填加量5%时,PE在60℃时为2.52×10-13 m2/s,而未填加时仅为1.42×10-13 m2/s;提高温度有利于乙醇的渗透。以乙醇/水物系为研究对象,结果表明,SiO2-PDMS复合膜渗透汽化性能与其渗透系数的变化趋势基本相同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号