首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 200 毫秒
1.
摘要:高铝钢用新型CaO-Al2O3基连铸结晶器保护渣结晶性能较强,在连续浇铸过程中易出现润滑与传热功能协调不均的问题。基于此,针对新型CaO-Al2O3基保护渣,考察了典型助熔剂Li2O对保护渣析晶温度、析晶物相等性能的影响,并进行了相关结晶动力学分析。结果表明,提高Li2O含量可使保护渣的临界冷却速率和初始结晶温度呈现先降低后升高的趋势,当Li2O质量分数为4%时,保护渣结晶倾向最弱。随Li2O质量分数从0增至6%,保护渣的结晶孕育时间先延长后缩短。析晶物相由CaAl4O7+CaF2转变为CaAl4O7+CaF2+LiAlO2,Li2O的加入及其含量的提高促进了LiAlO2的析出。此外,随Li2O质量分数从0增至6%,保护渣结晶活化能先增大后减小,析晶过程受到的阻力先增强后减弱,与结晶性能的变化规律相吻合。  相似文献   

2.
以L25(65)正交试验为基础配置CaO-Al_2O_3基保护渣,研究了不同组分对高铝高锰钢保护渣理化性能的影响。结果表明,不同组分对CaO-Al_2O_3基连铸保护渣熔化温度的影响均是随其含量的增加,熔化温度降低,对熔化温度影响的主次顺序为Li_2ONa_2OB_2O_3BaOCaF_2MgO;各不同组分在一定含量范围内,对CaO-Al_2O_3基连铸保护渣黏度整体上均有降低的作用;结晶难易程度由难到易的顺序依次为3#、4#、23#、19#、20#及5#保护渣;利用热力学软件计算得到冷却析出物质中,大部分都含Ca_3B_2O_6,而该物质熔点比较低,且玻璃形态好,不易结晶,可以满足部分高铝高锰钢连铸使用要求。  相似文献   

3.
 针对高铝钢浇铸过程中保护渣Al2O3含量大幅增加而导致保护渣玻璃形态恶化的问题,采用SEM和XRD分析方法对高铝钢浇铸前后保护渣的显微组织和结晶矿相进行分析,研究了不同组分对保护渣结晶性能的影响。结果表明:高铝钢连铸保护渣初始SiO2含量较高,保护渣玻璃形态较好。浇铸过程中随着保护渣Al2O3含量的增加和SiO2含量的减少,保护渣的结晶率增加,玻璃性能变差;渣中Li2O容易与F-生成LiF晶相;渣中CaF2含量较高时,容易析出CaF2晶体。  相似文献   

4.
 含铝钢连铸时,钢水中的铝与保护渣中SiO2反应导致保护渣中Al2O3含量增加而SiO2含量减少,导致保护渣的热物理性能发生变化,从而影响了铸坯的质量。在以前的研究基础上使用X射线衍射仪(XRD)和差热分析仪(DTA)以及扫描电镜(SEM)研究了高铝保护渣固态渣膜的结晶行为与晶体显微结构的变化规律。结果表明,高铝保护渣中CaF2的析出主要是因为SiO2含量的减少和Al2O3含量的增加导致大量的Ca2+的功能由电荷补偿变为网络修饰体,温度降低时CaF2首先析出;随着保护渣中Al2O3含量的增加,在同一加热速率下析晶温度升高;当保护渣中Al2O3含量较少时,析出晶体为枪晶石(Ca4Si2O7F2)和少量的CaF2,当Al2O3含量大于5%(质量分数,下同)时,霞石(NaAlSiO4)进一步析出,且随着Al2O3含量的增加,析出晶体的尺寸减小。  相似文献   

5.
针对涟源钢铁集团有限公司Q235B钢板坯连铸过程中发生的粘结漏钢现象,调查了Q235B钢浇铸过程中保护渣的使用情况,并分析和测定了现场保护渣原始渣样、渣条样和漏钢渣样的主要化学成分和物理性能。研究表明,保护渣浇铸前后Al2O3质量分数变化最大为2.7%;浇铸后熔化温度、熔化速度和黏度分别增加15℃、6s和0.04Pa·s,浇铸前后保护渣物理性能变化不大。  相似文献   

6.
KR脱硫反应过程中使用纯石灰脱硫剂会生成高熔点硅酸钙覆盖在CaO颗粒表面阻碍脱硫反应进行,以往采用加萤石方法生成低熔点的共晶化合物来解决该问题,但会侵蚀炉衬,且污染环境。使用铝渣后,Al可以和CaO中被置换出的O结合生成Al_2O_3,促进脱硫反应进行,并且可以减少高熔点硅酸钙的生成量。利用工业试验研究加入铝渣对铁水脱硫反应的影响,并利用热力学计算阐述其作用机理。结果表明:加入铝渣后,脱硫反应开始阶段生成Al_2O_3和CaS,随着反应深入,生成的Al_2O_3与CaO结合生成钙铝酸盐,反应产物按照"Al_2O_3→CA6(CaAl_(12)O_(19))→CA_2(CaAl_4O_7)→CA(CaAl_2O_4)→C_3A(Ca_3Al_2O_6)"路径依次生成转变。铝渣中的金属铝可以降低铁水氧势,促进脱硫反应进行,并且铝渣中的Al_2O_3会和CaO反应生成低熔点的钙铝酸盐。使用铝渣后铁水硫质量分数均值可降至4.6×10~(-6),硫质量分数低于10×10~(-6)的比例提升至81.9%。  相似文献   

7.
汽车轻量化有助于保护环境、节约能源,高铝钢有利于减轻汽车质量同时维持强塑性。但由于连铸过程中传统结晶器保护渣界面反应的制约,高合金钢铸坯质量和操作流畅性受到很大影响,引起裂纹、漏钢等问题。不仅会造成安全事故,还会增加成本。低反应型CaO-Al_2O_3系保护渣相对于传统保护渣,SiO_2质量分数在6%~10%之间,[Al]和(SiO_2)渣钢界面反应程度显著减弱,具有提高铸坯质量和确保操作顺行的潜力。设计此类保护渣时应该考虑渣钢界面反应、渣中元素向钢液中富集对铸坯质量的影响以及可能的结晶相种类。探讨了低反应型保护渣中成分对黏度变化机制的影响,即熔渣结构的变化、渣系过热度的变化和结晶相的变化。分别讨论了CaO/Al_2O_3、B_2O_3、Na_2O、Li_2O和CaF_2在CaO-Al_2O_3渣系中的作用,旨在为满足高铝钢连铸生产的新一代低反应型保护渣系的设计与优化提供思路与便利。  相似文献   

8.
采用RTW熔体物性测定仪研究了高铝中钛型高炉渣的黏度和熔化性温度,得到了不同添加剂成分对黏度和熔化性温度的影响规律。研究结果表明:在高铝中钛高炉渣中分别加入一定比例的CaF2、MnO、MgO、Li2O,均有利于炉渣黏度和熔化性温度的降低。综合考虑炉渣的流动性和添加剂的成本,比较适宜的添加剂为CaF2和MnO;各添加剂适宜的添加范围分别为:CaF2质量分数为0.5%~1.5%,MnO质量分数为2%~5%,MgO质量分数为1%~3%,Li2O质量分数为1%~2%。  相似文献   

9.
以现场高炉渣为基样,应用半球点法和内柱体旋转法测定CaO-SiO_2-Al_2O_3-TiO_2-MgO五元渣系的熔化温度和黏度,研究高铝低钛渣中Al_2O_3和TiO_2含量对炉渣流动性的影响。实验结果表明:随渣中Al_2O_3含量增加,炉渣的熔化性温度和黏度上升;TiO_2含量增加,炉渣的熔化性温度和黏度下降,适当添加TiO_2可避免渣中Al_2O_3含量增加引起的炉渣流动性变差;渣中矿物组成黄长石和玻璃质的数量随TiO_2含量增加而降低。  相似文献   

10.
以承钢现场渣为基准,研究了钛、镁、铝对炉渣黏度、熔化性温度和脱硫的影响。研究结果表明:在Ca OAl2O3-Si O2-Mg O-Ti O2五元渣系中,钛、镁、铝对炉渣性能的影响较大。随着Mg O质量分数增加,熔化性温度先降低后升高,黏度呈降低趋势,脱硫能力先升高后降低;随着Al2O3质量分数的增加,熔化性温度先降低后升高,黏度变化复杂,脱硫能力降低;随着Ti O2质量分数的增加,熔化性温度和黏度呈升高趋势,而脱硫能力降低。当炉渣碱度为1.12时,炉渣适宜成分:Mg O质量分数约为13.95%,Al2O3质量分数约为13.75%,Ti O2质量分数控制在10.57%以下。合理控制炉渣中钛、镁、铝的配比,对改善炉渣性能和提高高炉生产有重要意义。  相似文献   

11.
传统CaO-SiO_2系保护渣在浇铸高锰高铝钢时,渣中SiO_2易被钢中Al还原,造成保护渣成分改变和性能恶化,危害铸坯表面质量和连铸过程顺行。为了抑制钢-渣反应,旨在减少渣中氧化性组分的低反应性,CaO-Al_2O_3基渣系是重要选择方向。在评估高锰高铝钢凝固特性和传统反应性保护渣基础上,提出了低反应性保护渣基本性能要求,并采用单纯形法设计了CaO-Al_2O_3基保护渣系的试样组成。通过测试实验渣样的熔化特性和流动特性,获得了5组低反应性连铸保护渣熔化流动特性的成分控制区域。典型区域基本性能为:熔化温度(半球点温度)900~1 100℃,1 300℃的黏度0.1~0.2 Pa·s,转折温度900~1 150℃。  相似文献   

12.
高铝钢连铸过程中,为了避免或减轻钢液中Al与保护渣中SiO2发生反应,设计了低SiO2、高Al2O3含量的高铝钢连铸保护渣,通过添加适量的酸性氧化物B2O3协调熔渣酸碱性,利用实验分析了B2O3含量对高铝钢保护渣熔融特性、黏度特性及渣膜传热特性的影响.结果表明,B2O3含量在4%~10%时,随着B2O3含量增加,保护渣熔化温度、黏度、黏流活化能均降低,渣膜热流密度增加;保护渣的等温转变曲线(TTT曲线)向孕育时间增加的方向移动,晶体生长速率降低;实验条件下,增加B2O3含量可抑制保护渣中CaF2的析出.  相似文献   

13.
含铝TRIP钢钢液中Al易与结晶器保护渣中的SiO2发生氧化-还原反应,使其保护渣中Al2O3的质量分数由3%快速增加到30%左右,w(Al2O3)/w(SiO2)由0.10增加到1.44,导致黏度发生大的波动.研究了Al2O3含量和w(Al2O3)/w(SiO2)对含铝TRIP钢保护渣黏度的影响,建立了高Al2O3含量保护渣系黏度的计算模型.结果表明:随着Al2O3质量分数由3%增加到17%,综合碱度R1的保护渣黏度先增大再减小,而R≥1的保护渣黏度变化较小;随着Al2O3质量分数由17%增加到30%,保护渣的黏度快速增大;随着w/w的增大,Al-TRIP钢保护渣的黏度呈现先快速减小而后迅速增大的趋势.  相似文献   

14.
在电渣重熔过程中,熔渣的成分经常会随时间推移发生变化,熔渣成分的变化会影响电渣重熔锭元素分布的均匀性,甚至影响电渣重熔工艺的顺行.本文从含氟渣系的挥发和渣壳形成两个方面出发,论述影响电渣重熔过程中熔渣成分变化的因素以及熔渣成分变化对电渣重熔锭中Al、Ti元素烧损的影响.结果表明:CaO会降低熔渣的失重率,SiO_2和Al_2O_3会提高熔渣的失重率;渣壳的非平衡凝固引起的组分偏析,会使高熔点相Ca_4Al_6F_2O_(12)(3CaO·3Al_2O_3·CaF_2)和Ca_(12)Al_(14)F_2O_(32)(11CaO·7Al_2O_3·CaF_2)析出,致使熔渣的成分发生变化.此外,在电渣重熔Inconel 718高温合金过程中,通过理论计算,得出渣系中加入6%~10%的TiO_2能够抑制熔渣成分变化,并降低合金中Al和Ti的烧损.  相似文献   

15.
摘要:传统CaO-SiO2系保护渣在浇铸高锰高铝钢时,渣中SiO2易被钢中Al还原,造成保护渣成分改变和性能恶化,危害铸坯表面质量和连铸过程顺行。为了抑制钢 渣反应,旨在减少渣中氧化性组分的低反应性,CaO-Al2O3基渣系是重要选择方向。在评估高锰高铝钢凝固特性和传统反应性保护渣基础上,提出了低反应性保护渣基本性能要求,并采用单纯形法设计了CaO-Al2O3基保护渣系的试样组成。通过测试实验渣样的熔化特性和流动特性,获得了5组低反应性连铸保护渣熔化流动特性的成分控制区域。典型区域基本性能为:熔化温度(半球点温度)900~1100℃,1300℃的黏度0.1~0.2Pa·s,转折温度900~1150℃。  相似文献   

16.
为了进一步明确MgO对低铝高炉渣流动性和熔化性的影响机理,以酒钢高炉渣成分为基础,通过黏度试验并结合FactSage热力学软件分别研究了不同MgO质量分数的炉渣黏度、熔化温度、液相区变化以及炉渣冷却过程的物相变化。结果表明,炉渣黏度和熔化性温度随MgO质量分数的增加而降低,MgO质量分数控制在8%左右,可满足酒钢炉渣流动性的要求;随着MgO质量分数的增加,熔化区间增大,炉渣液相区远离CaO区域,向SiO_2和Al_2O_3区域扩大;冷却过程中,MgO质量分数的增加,有利于黄长石的形成,从而抑制硅灰石和假硅灰的形成。1 350℃时炉渣流动性受炉渣结构聚合度和渣中固相质量分数的双重影响,1 400℃以上炉渣流动性主要与其结构有关。低铝渣熔化性温度主要由炉渣结构聚合度和渣中镁黄长石质量分数共同决定。  相似文献   

17.
《炼钢》2017,(3)
针对Al质量分数为0.6%的汽车双相高强钢用保护渣Li_2O含量高、成本高的问题,研究开发了无Li_2O和低含量Li_2O(2%)2种新的保护渣,对工业化多炉连浇生产试验过程中的熔渣性能变化进行了评价,并分析了渣膜结构、高温析晶行为对结晶器综合传热系数的影响。结果表明,2种试验保护渣生产的铸坯质量均达到了预期效果,但无Li_2O的高碱度保护渣使用过程黏度上升幅度偏高,润滑性能不稳定,连铸过程稳定性较差;加入质量分数2%的Li_2O,增加了保护渣使用过程中的稳定性,实现了多炉连浇的正常应用,而由于保护渣析晶能力相对弱,结晶器的综合传热系数高于目前的高Li_2O保护渣,还须进行后续的进一步优化。  相似文献   

18.
采用旋转柱体法,研究了高铝高锰钢连铸过程中CaO-Al_2O_3-B_2O_3渣系对Al_2O_3的溶解行为,考察了Al_2O_3棒直径、温度和保护渣成分对Al_2O_3溶解行为的影响。结果表明,在一定时间内,1 300℃下,同种保护渣中Al_2O_3的溶解量随Al_2O_3直径的增大而增加;在一定直径和保护渣成分情况下,Al_2O_3的溶解量随温度的升高而增加;在一定直径和温度(1 300℃)下,2#渣中Al_2O_3的溶解量最大;Al_2O_3的溶解速率在熔渣液渣面处最大。此外,在保护渣吸收Al_2O_3能力及吸收后性能稳定性方面,2#渣优于其他三种保护渣。  相似文献   

19.
萤石对环境的污染日益受到重视,为了减少在精炼过程中CaF2的使用量,达到精炼渣低氟、无氟化的目的,开展了相关研究。综述了铝酸钙基精炼渣的性能以及B2O3,Li2O,BaO等替代物对精炼渣熔化温度、黏度以及脱硫能力、耐火材料侵蚀的影响。已有研究表明,使用铝酸钙基精炼渣能够有效降低CaF2的使用量,并具有良好的熔化性、发泡性以及脱硫性能;B2O3,Li2O,BaO等替代物都能够降低精炼渣的熔化温度和黏度,Li2O和BaO的加入增加了渣中O2-的活度,有利于提高精炼渣的脱硫能力。此外,精炼渣黏度的降低也促进了渣金界面反应的发生以及钢液中夹杂物的吸收。  相似文献   

20.
针对增加钒钛磁铁矿使用比例渣中TiO_2质量分数提高后,对二元碱度以及MgO、TiO_2和Al_2O_3质量分数等对高钛型高炉渣熔化性温度的影响进行了分析。结果表明,在二元碱度为0.9~1.3、MgO质量分数为7.00%~13.00%、TiO_2质量分数为21.00%~25.00%、Al_2O_3质量分数为13.00%~16.00%、其他组元不变的条件下,随着二元碱度、MgO质量分数升高,熔化性温度升高;随着TiO_2质量分数升高,熔化性温度先升高后降低;随着Al_2O_3质量分数升高,炉渣熔化性温度降低。二元碱度可以在较大范围内变化,对炉渣熔化性温度的调控作用最明显;MgO、TiO_2和Al_2O_3的质量分数只能在较小的范围内变化,对炉渣熔化性影响不显著。在渣中TiO_2质量分数为21.00%~25.00%的条件下,炉渣二元碱度不宜超过1.15,三元碱度不宜超过1.60,否则炉渣熔化性温度将显著升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号