首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以热模拟压缩试验的应力-应变数据为基础,根据DMM模型(dynamic materials model,动态材料模型)建立固溶态粗晶GH4169合金的热加工图;结合光学显微镜(OM)及电子背散射衍射(EBSD)分析,确定合金压缩变形的稳定区和失稳区,研究不同变形条件下的微观变形机制,并提出工艺参数范围.结果表明,粗晶GH4169合金在应变速率为10-0.25~1 s-1、变形温度为950~1100℃的条件下发生热加工流变失稳,失稳原因主要与局部塑性流动引发的裂纹有关;粗晶GH4169合金在中、低应变速率区有3个典型的动态再结晶区域,在应变速率为l0-3s-1、变形温度为950℃时局部能量耗散效率(η)的极大值主要与晶界析出δ相对动态再结晶的促进作用以及局部的晶内形核有关;综合考虑能量耗散效率、伸长率和组织状态,建议粗晶GH4169合金的始锻和终锻分别在应变速率为10-2.7~ 10-1.5s-1、变形温度为1087.5~1100℃和应变速率为10-2.5~10-1.5s-1、变形温度为1000~1065 ℃的条件下进行.  相似文献   

2.
以热模拟实验为基础,建立固溶态GH4169合金的动态再结晶模型,应用DEFORM-3D有限元软件模拟圆柱状试样在不同压缩变形条件下的动态再结晶体积分数分布;结合金相定量分析、电子背散射衍射(Electron backsatter diffraction(EBSD))分析及有限元模拟结果,对比研究变形参数对圆柱状GH4169合金心部微观组织的影响。研究结果表明:升高变形温度及降低应变速率,均可促进圆柱状GH4169合金热模拟压缩试样变形的均匀性;应变速率的降低可加速GH4169合金中小角度晶界向大角度晶界的转变过程;GH4169合金的动态再结晶形核机制为以原始晶界为主的非连续动态再结晶,在试验变形条件下,孪晶界的演化对动态再结晶过程起重要作用;同时,分析实验结果与模拟结果之间的差异及其原因。  相似文献   

3.
在Gleeble-3500D热模拟机上采用单道次等温压缩试验,系统研究了GH4169合金在变形温度为900~1 150℃、应变速率为0.01~10 s~(-1)、变形量为10%~70%条件下的热变形行为,通过绘制流变应力曲线和显微组织观察,分析了热变形参数对GH4169合金流变应力、峰值应力和发生动态再结晶的影响,并建立了GH4169合金的本构关系模型。  相似文献   

4.
系统研究了GH4169合金在900~1 150℃、变形量为50%、变形速率为10 s~(-1)的压缩条件下的微观组织演变。结果表明,在设定的温度范围内,GH4169合金的微观组织逐渐由变形态向不完全再结晶态以及完全再结晶态发生转变。合金中的析出相主要有微米级别的块状碳化物和亚微米级别的颗粒状δ相。少量细小析出相的存在对合金的组织细化有着很好的促进作用,在相对较小的变形量下,合金的晶粒尺度同变形前相比显著减小。  相似文献   

5.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了GH690合金在变形温度为950~1200℃、应变速率为0.001~10.000 s-1条件下的热变形行为,利用动态材料模型构建了GH690合金热加工图,并基于加工图进行GH690合金管材热挤压实验。结果表明:GH690合金有应力峰和动态再结晶软化的特征,在ε≥0.4时,流动应力趋于稳定状态;在热加工图中变形温度为1100~1150℃、应变速率为1.0~2.5 s-1时功率耗散效率达到0.34~0.39,该区域对应的工艺参数适合于进行GH690合金管材热挤压;在热加工图中变形温度为950~1000℃,应变速率在0.94~10.00 s-1之间的区域为不稳定变形区域,热加工时应该避开这一区域。  相似文献   

6.
采用Gleeble高温压缩实验研究了变形条件对GH625合金高温变形动态再结晶的影响,结果表明:当变形程度较小时,原始晶粒内部出现大量孪晶,晶界呈现锯齿状凸出;随变形程度的增加,在晶界弓出部位开始形核,形成大量再结晶晶粒,随变形程度进一步增加,GH625合金动态再结晶体积分数增大,但是再结晶晶粒尺寸无明显变化;GH625合金动态再结晶是一个受变形温度和应变速率控制的过程,变形温度越高,动态再结晶越容易形核,应变速率越小,动态再结晶过程进行得越充分。在低应变速率条件下,GH625合金获得完全动态再结晶组织的温度随变形速率的升高而升高,而在高应变速率条件下必须考虑变形热效应对合金变形组织的影响。  相似文献   

7.
对细晶GH4169合金的超塑性性能、超塑成形应用及超塑变形机理进行了研究.结果表明GH4169合金在温度为950℃、初始应变速率为1.6×100-4s-1~2.0×10 3s1的条件范围内,伸长率都高于275%,最高伸长率可达513%,表现出好的超塑性性能;利用超塑成形工艺制备出了飞行器用GH4169合金燃气集合器,并通过了30MPa液压压力、保压10min的打压试验;晶界滑移是GH4169合金超塑变形的主要变形机制,位错的滑移只起到一定的协调作用.  相似文献   

8.
针对铸态组织粗大的特点,在GH4169合金φ508 VAR锭R/2处切取大尺寸热顶锻试样进行镦粗试验,以考察合金锭的抗镦粗能力,以及变形温度、变形量对铸态组织动态再结晶的影响。结果表明,1 060和1 120℃,10%~60%变形量时,均未发现裂纹萌生和扩展的迹象。随着变形量增大,原始组织中的显微裂纹和显微疏松明显减少或缩小;同一变形温度时,变形量增加,动态再结晶的比例迅速提高;相同变形量时,较高的变形温度能够有效地促进动态再结晶,降低动态再结晶的临界变形量。  相似文献   

9.
利用变形温度为1120~1210℃、应变速率为0.1~20 s-1以及变形量为15%~60%的等温热压缩实验研究了GH4700合金的热变形行为.通过对低温和高应变速率条件下的形变热效应进行修正,得到准确的流变曲线,推导出描述峰值应力与温度和应变速率等变形参数的本构方程,并得到GH4700合金热变形表观激活能为322 kJ.组织分析表明,动态再结晶是热变形过程中最主要的软化方式,再结晶形核方式为应变诱发晶界迁移,变形温度升高和应变速率增大均有利于再结晶形核.再结晶发展阶段,随着变形量的增大和变形温度的升高,动态再结晶比例增加,在应变速率-温度坐标中,再结晶比例等值线呈反"C"形式.采用分段函数描述了不同应变速率下GH4700合金动态再结晶晶粒尺寸与变形参数的关系.   相似文献   

10.
龚志华  何禛  包汉生  杨钢 《钢铁》2019,54(3):63-68
 为了解决2Cr12NiMo1W1V耐热钢在锻造过程中晶粒粗大和组织不均匀的问题,利用Gleeble-3800热模拟试验机,在变形温度为1 000~1 200 ℃、应变速率为0.01~10 s-1、变形量为70%的条件下,研究和分析了2Cr12NiMo1W1V耐热钢的高温塑性变形和动态再结晶行为。结果表明,该耐热钢的真应力-应变曲线具有动态再结晶特征。再结晶晶粒尺寸随着变形温度的增加或应变速率的降低呈增加趋势,在变形温度为1 150~1 200 ℃,应变速率为0.01 s-1时,晶粒尺寸急剧增加。在真应力-应变曲线的基础上,建立了材料热变形本构方程,其热激活能为453.74 kJ/mol。根据峰值应力绘制了合金的热加工图并获得在各加工条件下的效率值,合金的最佳热加工区间为变形温度为1 000~1 150 ℃、应变速率为0.1~1 s-1以及变形温度为1 060~1 125 ℃、应变速率为0.1~10 s-1。  相似文献   

11.
利用卧式挤压机对GH625合金进行了管材热挤压试验,研究了挤压温度和挤压比对GH625合金管材挤压过程中的力能参数及挤压后管材不同部位的显微组织的影响.结果表明,随着挤压温度的降低和挤压比的升高,最大挤压力逐渐升高.管坯在固定挤压速度40 mm·s-1,预热温度为1150~1200℃和挤压比为3.46~4.10的条件下,可成功挤压出3种规格的GH625合金管材;挤压后的管材由于在挤压过程中发生了动态再结晶组织明显细化,管坯横向组织为等轴的动态再结晶晶粒和原始晶粒组成,纵向组织则由等轴的动态再结晶晶粒及被拉长的原始晶粒组成,呈条带状组织;挤压后管材的外壁、中心、内壁与管材的头部、中部与尾部在热挤压变形过程中,由于变形不均匀发生了不同程度的再结晶,因而存在不同程度的混晶组织.为消除混晶组织,结合设备能力与GH625合金的变形特征,可通过提高坯料挤压的变形温度和挤压比来控制变形的均匀性,并通过切头,去尾和对管材内壁进行少量机加工的方法,可获得具有完全动态再结晶组织的挤压管材.  相似文献   

12.
GH4169合金及其锻件晶粒形貌的特点   总被引:2,自引:0,他引:2  
热加工过程中变形参数的变化会使GH4169合金和锻件形成不同的晶粒形貌,而且在随后低于静态再结晶温度固溶热处理时其晶粒形貌不会改变.因此,评定晶粒度级别时需要采用与以往不同的方法.  相似文献   

13.
采用Gleeble-1500D热加工模拟试验机及微观组织分析系统研究了热加工参数对GH738合金动态再结晶组织分布的影响规律。结果表明:影响GH738合金动态再结晶晶粒分布均匀性的主要因素是变形量,当变形量大于50%且接近70%时更易获得较均匀的再结晶组织。变形速度及温度对动态再结晶也有一定的影响:变形速率减小,变形温度升高,再结晶体积分数提高;变形速率增大,变形温度降低都导致再结晶晶粒的体积分数减小。进一步的电镜分析表明,GH738合金动态再结晶的形核机制以应变诱发形核为主。  相似文献   

14.
粉末冶金TiAl合金热变形行为及加工图的研究   总被引:2,自引:1,他引:1  
采用热模拟压缩试验研究了粉末冶金TiAl合金在温度1000~1150℃、应变速率0.001~1s-1范围内的高温变形特性,发现合金的流动应力-应变曲线具有应力峰和流变软化特性。为了研究TiAl合金在有限应变下的变形行为,基于动态材料模型(DMM)建立起了TiAl合金加工图。试验结果表明,在高应变速率(0.1s-1)变形时,材料落入流动失稳区域,出现表面开裂。这对材料的变形是有害的,要避免在流动失稳区进行热加工处理。而在温度为1000~1050℃,应变速率为0.001~0.01s-1时,功率耗散率η值在35%~50%之间。这个区域对应的变形机制为动态再结晶,适合进行热加工。在高温(≥1100℃),低应变速率(0.001s-1)变形时,功率耗散率η达到最大值60%,此时材料发生超塑性变形。  相似文献   

15.
李振团  秦鹤勇  田强  张文云  赵光普 《钢铁》2022,57(2):117-126
 为了研究不同变形参数对锻态GH4742合金动态再结晶及γ′相的影响,利用单道次等温压缩试验获得了变形温度为1 050~1 150 ℃、变形量为30%~70%、变形速率为0.1 s-1时的真应力-真应变曲线,分析了不同变形参数下真应力-真应变曲线以及峰值应力的变化规律,同时采用SEM、EBSD对不同变形参数下动态再结晶过程中的亚结构以及γ′相进行了精细表征,定量计算了基体内的几何位错密度以及发生动态再结晶的比例,并测试了不同变形参数下基体的硬度。重点探讨了不同变形参数下动态再结晶的形核机制,深入分析了动态再结晶过程中亚结构以及γ′相的演变规律。结果表明,变形温度为1 080 ℃时,基体中存在大量未溶的一次γ′相,小角度晶界比例超过35%,基体发生动态再结晶比例小于35%,主要形核方式为连续动态再结晶。变形温度为1 110 ℃,一次γ′相尺寸减小并发生回溶,小角度晶界比例小于8%,基体发生动态再结晶比例超过75%,主要形核方式为不连续动态再结晶。随着变形量增加,一次γ′相尺寸增大、数量密度降低,小角度晶界比例显著下降,动态再结晶比例明显提高。低温变形时基体硬度随着变形量增加而显著增加,而高温变形时硬度先增加后逐渐趋于不变。GH4742合金变形温度为1 110 ℃时,变形量50%时已完成动态再结晶,组织为等轴的动态再结晶晶粒,基体硬度较低,为357HV,在此变形参数下加工具有良好的热成型性能。  相似文献   

16.
摘要:采用ThermecmastorZ热模拟试验机研究了EH40船板钢在850~1050℃,0.005~10s-1条件下的热变形行为,通过动态材料模型得到该区域的热变形与变形抗力方程并建立了EH40船板钢热加工图。结果表明,EH40船板钢的变形抗力模型的预测值与试验值吻合良好,EH40船板钢的热变形激活能为324.479kJ/mol,由热加工图确立出EH40船板钢最优的热加工窗口是应变不高于0.4,温度在850~1050℃,应变速率为小于10s-1的加工区域,较易发生动态再结晶。  相似文献   

17.
Inconel690合金高温高速热变形行为研究   总被引:1,自引:0,他引:1  
在Gleeble-3800热模拟试验机上,采用热压缩实验研究了不同变形条件下Inconel 690合金的高温变形行为与组织演变特点.实验中采用的变形温度为1000~1200℃,变形量为70%,变形速率为1.0 ~80.0 s-1.根据实验结果获得了该合金的应力-应变关系,并对峰值应力进行了线性回归,由此得到了该合金的高温材料常数,激活能Q =417.6 kJ.mo1-1,α =0.003196 MPa-1,n=7.51,并最终得到了Incone1690合金的高温变形本构方程.通过金相显微镜研究了合金动态再结晶规律与温度和应变速率的关系,结果表明:变形温度对Inconel 690合金组织的影响很大,随温度的升高,动态再结晶百分数逐渐增加,且伴随着晶粒的长大;而提高应变速率,变形的时间缩短,位错密度迅速增大,动态再结晶的驱动力增加,也可以使再结晶后的晶粒细化;当温度为1150℃左右,应变速率50~80 s-1时,能够得到均匀细晶组织.  相似文献   

18.
利用Gleeble-3800热力模拟机,在温度950~1 150℃,应变速率0.1~10 s-1,变形量为70.9%的条件下,对9Cr3W3Co合金进行了单道次热变形实验。为了更好地模拟现场过程,分别采用道次变形量由大到小以及道次变形量由小到大的方案,进行多道次变形过程模拟,应变速率为5.0 s-1,总变形量为70.9%。研究了汽轮机叶片用9Cr3W3Co合金动态再结晶行为的变形特点,得到了合金的应力-应变曲线,并利用动态材料模型构建该合金在不同变形条件下的三维热加工图。结果表明,9Cr3W3Co合金的应力-应变曲线表现出应力随变形温度的升高而降低,随应变速率的增大而增大。为准确描述三者间的关系,建立了双曲正弦本构方程,最终得到其热激活能为655.051 kJ/mol,结合微观组织演变的结果分析,得出合金的最佳热加工区域应为:变形温度1 050~1 150℃,应变速率0.1~1 s-1,并且在快锻变形过程中,先大变形后小变形的锻造工艺有利于获得均匀的晶粒尺寸。  相似文献   

19.
梁剑雄  雍岐龙  张良  王长军 《钢铁》2016,51(9):82-89
 运用Gleeble-3800热模拟试验机研究了1Cr17Ni1马氏体-铁素体双相不锈钢在变形温度为950~1 150 ℃、应变速率为0.1~10 s-1条件下的热压缩变形行为。运用双曲正弦函数构建了本构方程,得到了表观激活能为391.586 kJ/mol,并基于动态材料模型绘制了1Cr17Ni1钢不同应变量下的热加工图。观察变形后的组织形貌得到较低温度下发生动态回复与动态再结晶,较高温度只发生动态回复,综合热加工图与变形后组织得到最佳热变形工艺:热加工温度范围为950~1 000 ℃、热加工变形速率范围为0.1~0.3和5~10 s-1。  相似文献   

20.
采用Gleeble-1500热/力模拟试验机进行压缩试验,研究了不同变形条件下微量稀土对T91耐热钢动态再结晶行为的影响.分析绘制了稀土加入前后实验钢的真应力-真应变曲线、再结晶-温度-时间图、再结晶图及功率耗散图,并计算了高温下实验钢的再结晶激活能.在变形温度为850~1100℃,变形速率为0.004~10 s-1变形条件下,变形温度越高和变形速率越低,动态再结晶越容易发生.稀土加入会产生固溶强化,稀土元素与碳原子发生交互作用,且在晶界处或晶界附近偏聚,使变形抗力与峰值应变均增大,再结晶激活能由354.6 kJ·mol-1提高到397.2 kJ·mol-1.另外,稀土会显著推迟再结晶发生时间,扩大再结晶的时间间隔,推迟再结晶动力学过程.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号