首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Fe/C微电解和Fe/C微电解-Fenton氧化联合工艺对垃圾渗滤液进行处理,研究了废水初始pH、药剂投加量、药剂投加比例和反应时间等对处理效果的影响,获得Fe/C微电解处理垃圾渗滤液的最佳工艺条件:初始pH=3、m(Fe)/m(C)为4、ρ(Fe/C)为0.6 g/L、反应时间为60 min,处理后COD降至5 960 mg/L,COD去除率达51.8%。Fe/C微电解-Fenton氧化处理垃圾渗滤液的最佳工艺条件:在Fe/C微电解最佳条件下,H2 O2投加量为11 mL/L,反应时间为100 min,出水COD为4 480 mg/L,COD总去除率为63.8%。垃圾渗滤液中的腐殖酸类有机质经过Fe/C微电解或微电解-Fenton氧化处理后变成小分子产物,与Fe/C微电解相比,Fenton氧化对腐殖酸等大分子有机质有更强的氧化降解效果。  相似文献   

2.
采用Fe/C微电解—Fenton氧化法处理松节油加工废水,Fe/C微电解单元主要研究了铁屑投加量、铁炭比、pH对处理效果的影响;Fenton氧化单元主要研究了H2O2投加量、超声、UV对Fenton处理效果的影响。结果表明:在铁屑投加量为100 g/L,铁炭比为1,pH为2时,COD、色度的去除率达到84.2%、96%,B/C从0.12升高到0.41;在H2O2投加量为8 mL,pH为3,超声功率为100 W的条件下,COD去除率达到98.5%,B/C从0.41提高到0.65,最终处理后废水COD≤100 mg/L,色度≤5。  相似文献   

3.
采用铁炭微电解吸附-Fenton氧化、超声联合工艺处理高浓度有机实验室废水,研究了pH值、H2O2投加量、FeSO4投加量、反应时间等因素对COD去除率的影响。结果表明:铁炭微电解吸附体系在pH=5、Fe∶C体积比为1∶1、时间为3h条件下COD去除率为24%;再经Fenton氧化控制反应时间2h,在FeSO4投加量为6g/L、H2O2投加量为90mL/L、pH=3的处理条件下,废水COD总去除率达48.32%。  相似文献   

4.
采用Fe/C微电解与Fenton协同氧化-混凝沉淀-A/O组合工艺对蒽醌类染料废水进行处理,研究了各处理单元的优化反应条件。结果表明,在Fe/C微电解与Fenton协同氧化处理单元,当H_2O_2投加量为3 mL/L、HRT为100min、pH为3时,单级COD和色度去除率分别为80.67%和92.73%,BOD5/COD由初始的0.07升高至0.45;在混凝沉淀单元,当pH为8,PAC、PAM的投加量分别为200、2 mg/L,沉淀时间为30 min时,单级COD和色度去除率分别为65.41%和88.33%,BOD5/COD提高至0.57;通过后续生化处理后,最终出水的COD为68 mg/L,色度为30倍,总去除率分别达到99.01%和99.82%,出水NH_4~+-N、TN、TP的质量浓度分别为3.65、19.22、0.38 mg/L,出水水质均达到了GB 4287-2012排放标准。  相似文献   

5.
采用Fe/C微电解-Fenton氧化-生化组合工艺处理杭生素生产废水,Fe/C微电解单元主要讨论了铁炭体积比、HRT,pH曝气量大小对处理效果的影响;Fenton氧化单元主要讨论了H202投加量、pH,HRT对处理效果的影响;混凝沉淀和生物接触氧化处理主要讨论了pH和HRT对各自处理效果的影响.结果表明,在最佳试验参数条件下,废水的色度、COD总的去除率分别为99.93%和99.73%,最终出水色度≤10倍,COD≤50 mg·L-1.  相似文献   

6.
以混凝-铁炭微电解-芬顿高级氧化工艺对垃圾渗滤液进行深度处理。探究了混凝剂投加量、微电解时间及H_2O_2投加量等因素对COD去除效果的影响。在PAC投加量为1 400 mg/L,PAM投加量为800 mg/L,铁炭微电解时间为3 h,H_2O_2的投加量为4 mL/L的条件下,垃圾渗滤液的COD整体去除率在84.7%左右,溶液的色度明显减小,有利于后续的生化处理。  相似文献   

7.
采用pH中性条件下的铁碳微电解联合次氯酸钙氧化法深度处理实际工业废水。结果表明,在不调节原水pH的前提下,通过单因素实验和正交实验确定铁碳微电解优化条件:m(Fe)/m(C)为1:3,铁投加量为60 g/L,反应时间为4 h,次氯酸钙氧化法优化条件为铁碳微电解絮凝出水pH不调节,次氯酸钙投加量为400 mg/L,反应时间为40 min。优化工艺条件下对该废水进行深度处理,废水的COD和NH_3-N的去除率在67%和99%以上,最终出水COD≤55mg/L,NH_3-N的质量浓度≤0.1 mg/L,达到了GB 18918-2002中的一级排放标准要求。  相似文献   

8.
铁炭微电解-Fenton-生物接触氧化法处理土霉素废水   总被引:2,自引:0,他引:2  
采用了铁炭微电解-Fenton-生物接触氧化工艺对高浓度难生化处理的土霉素废水进行处理.结果表明,当原水COD在6 000 mg·L~(-1)左右、pH=2.2时,铁炭微电解反应50 min后COD的去除率达到40%,再对铁炭微电解出水投加质量浓度220mg·L~(-1)的H_2O_2(30%)进行Fenton试剂法处理,COD的去除率达到75%以上,然后进入生物接触氧化反应池,出水能够达到排放标准.  相似文献   

9.
对某颜料企业高浓度洗涤废水进行了混凝沉淀、微电解-Fenton氧化的处理研究。结果表明,在pH=12,PAC投加量为250 mg/L时,COD、LAS、SS去除率分别为47.8%、47%、52%。微电解-Fenton氧化的最佳条件为:铸铁粉投加量为0.3 g/L,微电解反应时间为1 h,双氧水投加量为10 mL/L,Fenton氧化时间为3 h。研究发现将混凝沉淀置于微电解-Fenton氧化前可提高处理效率,COD、LAS总去除率分别高达77.9%、98%。  相似文献   

10.
探究了破乳混凝沉淀预处理结合微电解耦合Fenton氧化工艺对煤层气产出水的降解效果。结果表明,微电解耦合Fenton氧化工艺,在微电解pH为3.0,曝气强度为150 L/h,Fenton氧化反应pH为3.5,H2O2投加量为800mg/L的条件下,微电解COD去除率为66.85%,Fenton氧化反应COD去除率为60.30%,综合COD去除率达86.84%,整体工艺最终出水COD为174.21 mg/L,悬浮物质量浓度为2.64 mg/L,石油类质量浓度为1.21 mg/L,整体工艺的悬浮物去除率为99.01%,石油类去除率为97.40%,COD去除率为93.14%,实现了煤层气产出废水的高效处理。  相似文献   

11.
采用铁炭微电解-Fenton氧化法对含喹吖啶酮颜料中间体有机废水进行预处理。得到微电解的最佳条件是:pH值为5、铁水体积比为0.375、铁炭体积比为1、反应停留时间为60 min;且这4因素的影响顺序是pH值>铁屑投加量>铁炭体积比>停留时间。Fenton氧化法的最佳条件是:pH值为4~7、反应时间为50 min、FeSO4和H2O2投加量分别为300 mg/L和2.5 mL/L。试验结果表明,将这两种方法联合对含喹吖啶酮颜料中间体有机废水的处理效果十分明显,在最佳试验条件下,当进水COD质量浓度为16 800 mg/L,色度为20 000倍时,COD的总去除率达到94%以上,出水色度小于40倍,为后续处理创造了有利条件。  相似文献   

12.
采用微电解工艺及微电解-Fenton工艺处理对氨基苯酚废水。结果表明,处理200 mL浓度为0.5 g/L对氨基苯酚废水,单独微电解工艺,在pH为3,废铁屑投加量50 g/L,铁炭质量比为20∶1,反应60 min, COD和色度去除率分别为40.25%和42.28%。微电解-Fenton联用,在pH为3,铁炭质量比为20∶1,双氧水投加量30 mL/L,反应60 min, COD和色度去除率分别达到93.72%和95.7%。  相似文献   

13.
采用Fe/C微电解-Fenton氧化-混凝沉淀-生化法组合工艺处理松节油加工废水,首选通过正交和单因素实验,确定Fe/C微电解、Fenton氧化、混凝沉淀等工艺运行的最佳条件,考察COD的去除效果及BOD5/CODCr比值的改变,探讨废水的可生化性的改善;然后通过BAF工艺进行生化处理,确定工艺影响参数,考察废水达标排放的可行性. 结果表明,在铁屑投加量为100 g/L,Fe/C质量比为1.5:1,H2O2投加量为40 mL/L,PAM投加量为8 mg/L时,废水经Fe/C微电解、Fenton氧化、混凝沉淀等工艺预处理后出水COD为200~450 mg/L,COD去除率达98%,BOD5/CODCr比值由0.13提高到0.64,满足后续生化处理要求;生化处理单元采用曝气生物滤池,在水力停留时间为5 h、DO浓度为2~3 mg/L,处理后出水COD、动植物油和色度为50~90, 3~10和30~50 mg/L时,出水水质达到《污水综合排放标准》(GB8978-1996)一级标准.  相似文献   

14.
铁炭微电解-微波预处理垃圾渗滤液膜滤浓缩液   总被引:1,自引:0,他引:1  
采用铁炭微电解-微波协同氧化技术预处理垃圾填埋场产生的垃圾渗滤液膜分离浓缩液。结果表明:当铁炭微电解处理的进水pH为3.0,铁炭质量比为1∶1,气水比15∶1,反应时间为4 h;氧化预处理的进水pH为3.0,氧化剂质量浓度为2 g/L,反应时间为10 min;微波功率为600 W,反应时间为10 min时,系统出水COD为280 mg/L,色度为40倍,总COD去除率及总色度去除率分别达91.4%、96.8%;出水B/C从0.006提高到0.17,出水的可生化性得到较大的改善。  相似文献   

15.
铁炭微电解-Fenton试剂联合氧化深度处理印染废水的研究   总被引:10,自引:0,他引:10  
采用铁炭微电解-Fenton联合氧化技术对印染废水生化处理的出水进行深度处理,考察了pH值、H2O2投加量、铁炭体积比、反应时间对处理效果的影响。结果表明,最佳反应条件为:pH2~3,H2O2用量3.2 mL/L,铁炭体积比为1∶1,反应时间为90 min,COD的去除率达到90%以上,色度去除率为99%,盐度去除率为64%,各项指标均达到了印染废水的回用要求。  相似文献   

16.
采用微电解-Fenton氧化法对新诺明合成废水进行预处理试验研究。通过正交及单因素试验确定微电解法的最佳工艺条件为:Fe、C质量比3∶1、Fe的投加量120 g/L、初始反应p H在3.0、反应时间3 h,废水COD为32 100 mg/L左右时,经预处理后COD去除率达27%以上;联合Fenton氧化法确定最佳反应条件为:H2O2投加量4 m L/L、反应时间60 min,处理后出水总COD去除率达到55%以上,B/C由0.12提高至0.30。该废水经预处理后可生化性明显提高,为后续生化处理创造了条件。  相似文献   

17.
铁炭微电解/Fenton氧化预处理高浓度煤化工废水的研究   总被引:2,自引:1,他引:2  
采用铁炭微电解/Fenton氧化组合工艺预处理高浓度煤化工废水,研究了工艺条件对COD去除率的影响。结果表明,铁炭床微电解的最佳运行条件为:进水pH=2,反应时间为20 min;Fenton氧化的最佳条件为:进水pH=4,30%H2O2投加量为3 mL/L,反应时间为60 min。在此运行条件下,COD总去除率可以达到60%~70%,其中微电解反应床COD去除率为40%~47%。采用该工艺预处理高浓度煤化工废水,降低了后续生物处理的负荷,同时不会引起铁炭床的钝化和板结。  相似文献   

18.
本研究采用化学混凝-芬顿氧化联合法处理某膏药生产处理废水。混凝试验结果表明:当采用聚合硫酸铁,且投加量为1000 mg/L,混凝时间3 h,pH值8.0时,废水COD去除率为37.0%,水处理处理效果较好。芬顿氧化试验表明:H2O2和Fe2+投加量分别为80mg/L和60 mg/L,反应时间为80min,pH值为3.0时COD去除率达89.1%。化学混凝芬顿氧化联合试验表明:该废水的COD去除率可达90.1%,出水较为清澈。  相似文献   

19.
采用微电解+Fenton法处理DDNP废水,考虑微电解系统的活性炭的投加量,Fe/C,pH,反应时间等因素在不同条件下原水的COD去除情况及色度变化。实验结果表明,最佳pH为4,Fe的投加量为30 g/L,最佳Fe/C为3/2,最佳反应时间60 min。COD的去除最高可达到58.8%。Fenton系统H2O2的投加量为4 mg/L,微电解+Fenton系统的COD去除率为87.53%。  相似文献   

20.
采用铁炭微电解-Fenton氧化-生物接触氧化组合工艺处理石化废水,考察了不同因素对各单元废水处理效果的影响。结果表明:当铁炭质量比为1.5∶1,pH值为4.0,HRT为120min时,铁炭微电解单元出水CODCr的质量浓度为420mg/L,单级CODCr去除率为67.57%,出水m(BOD5)/m(CODCr)值由0.020.03升高至0.30;当H2O2投加量为3.0mL/L,pH值为3.5,反应时间为60min时,Fenton氧化单元出水CODCr的质量浓度为130mg/L,单级CODCr的去除率为72.17%,出水m(BOD5)/m(CODCr)值由0.30进一步升高至0.58。经过预处理的出水再进行生物接触氧化处理,出水CODCr的质量浓度小于20mg/L。该组合工艺对CODCr的总去除率高达98.76%,表明物化预处理-生化法组合工艺对此类可生化性较差且组成复杂的石化废水具有比较理想的处理效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号