首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以自行开发的羟基铁作为除磷吸附剂,针对低磷浓度水研究了羟基铁吸附法深度除磷的影响因素及吸附动力学,并对污水厂二级出水进行吸附除磷试验。结果表明:当水中磷酸盐的初始浓度为0.5 mg/L、羟基铁投加量为0.03 g/L、反应体系pH值为6.0、反应时间为30 min、体系温度为25℃时,羟基铁对磷酸盐的去除率为98.3%,剩余磷酸盐浓度为0.008 mg/L;在15~35℃的吸附等温线均能用Langmuir等温吸附模型描述,模型的R~2均达到0.99以上;伪二级动力学方程能够更好地拟合羟基铁对磷的吸附过程,R~2均达到0.999以上;2 mol/L的NaOH溶液对载磷羟基铁进行解吸,解吸率为97.3%,连续再生3次后的吸附量为初始吸附量的88.1%,再生效果明显;二级出水经羟基铁吸附深度除磷后,出水TP降至0.02 mg/L,可有效控制受纳水体的富营养化。  相似文献   

2.
以硝酸铁和氢氧化钾为原料制备得到羟基氧化铁样品,考察其对Cd2+的吸附效果及吸附等温线与吸附动力学特性。采用XRD、SEM、BET、FT-IR、XPS对样品形貌、结构进行表征并分析其吸附机理。结果表明,实验所制得羟基氧化铁产物为α-Fe OOH,在p H为5~7时对Cd2+有良好的吸附效果。在温度为25℃、吸附剂投加量为0.03 g、p H为6、背景腐殖酸(HA)质量浓度为20 mg/L、Cd2+初始质量浓度为20 mg/L条件下,α-Fe OOH对Cd2+的吸附量可达20.34 mg/g,吸附过程较好地遵循了Langmuir、Freundlich等温吸附模型与准二级动力学模型。α-Fe OOH表面羟基及吸附在α-FeOOH表面HA层中羧基对Cd2+的络合是其主要吸附机制。  相似文献   

3.
制备了蜂巢石纳米水合氧化铁复合吸附剂(PUMICE-NHFO),研究投加量、溶液pH和共存阴阳离子对PUMICE-NHFO同时吸附氮和磷性能的影响;采用吸附等温线和吸附动力学模型研究PUMICE-NHFO的吸附特征。结果表明,纳米水合氧化铁成功地负载到蜂巢石上。当PUMICE-NHFO投加量为7.5 g/L、溶液pH为7时,氮和磷被吸附的效果较好,共存阴阳离子与氮和磷竞争吸附位点,降低氮磷吸附效率。PUMICE-NHFO对氮和磷的吸附过程更符合Langmuir吸附等温线模型,氮和磷的最大吸附量分别为3.09 mg/g和5.12 mg/g。准二级动力学模型可准确描述PUMICE-NHFO吸附氮和磷的过程,R2可分别达到0.992和0.996,吸附过程主要受化学吸附控制。经过5次吸附-解吸循环后,PUMICE-NHFO对氮和磷的吸附容量仍保持在初次吸附容量的68%以上,表现出较好的可重复利用性。  相似文献   

4.
《应用化工》2022,(4):859-862
为了阐明改性钢渣陶粒应用于水体除磷的可行性,通过吸附实验研究了镧铁复合氧化物改性钢渣陶粒对低浓度磷的吸附特性,考察了投加量、pH、共存离子等因素对除磷率的影响,并研究其吸附动力学特性。采用NaOH作为再生剂,比较了吸附饱和的改性钢渣陶粒经不同条件再生处理后的除磷效果。结果表明,对于初始磷浓度1 mg/L的溶液,吸附剂投加量5 g/L,pH为7时,除磷率高达99.07%;HCO_3-和SO_4-和SO_4(2-)对除磷的抑制作用较强。吸附动力学过程符合准二级动力学模型。使用1.5 mol/L NaOH浸泡60 min是较为合理的再生条件,一次再生后的除磷率仍可达98.51%。  相似文献   

5.
为研究给水厂含铝污泥对水中磷的吸附特性,考察了污泥投加量、p H、磷初始浓度、污泥粒径、吸附时间以及温度等因素对除磷效果的影响。结果表明,在污泥投加量为15 g/L,p H为2~10,磷初始质量浓度为10 mg/L,污泥粒径为0.15~0.3 mm,吸附100 min时,除磷效果最好,磷去除率为90.93%,吸附量为0.60 mg/g。磷吸附量与磷初始浓度成线性关系,并且温度越高,吸附量越大。给水厂含铝污泥对磷的吸附动力学符合Lagergren准二级动力学模型,吸附数据与采用Langmuir等温吸附模型得出的计算值吻合很好,且吸附反应为吸热反应,能自发进行。  相似文献   

6.
为了阐明改性钢渣陶粒应用于水体除磷的可行性,通过吸附实验研究了镧铁复合氧化物改性钢渣陶粒对低浓度磷的吸附特性,考察了投加量、pH、共存离子等因素对除磷率的影响,并研究其吸附动力学特性。采用NaOH作为再生剂,比较了吸附饱和的改性钢渣陶粒经不同条件再生处理后的除磷效果。结果表明,对于初始磷浓度1 mg/L的溶液,吸附剂投加量5 g/L,pH为7时,除磷率高达99.07%;HCO_3~-和SO_4~(2-)对除磷的抑制作用较强。吸附动力学过程符合准二级动力学模型。使用1.5 mol/L NaOH浸泡60 min是较为合理的再生条件,一次再生后的除磷率仍可达98.51%。  相似文献   

7.
选取长久堆存的赤泥堆场风化物,采用酸活化的方式改善其除磷性能,重点考察了酸活化浓度、接触时间和投加量对材料除磷性能的影响。实验结果表明,酸活化有效提高了风化赤泥样品的除磷性能。例如,选取2. 5 mol/L盐酸活化后的样品进行除磷实验,在20℃下,样品投加量10 g/L接触时间3 h时对50 mg/L含磷溶液的除磷率可达到96. 30%。随着赤泥样品投加量的增加,磷的去除率逐渐上升并趋于平缓,最经济投加量约为10 g/L。  相似文献   

8.
采用氯化钠离子交换和氯氧化锆沉积-沉淀两步法改性天然沸石,得到具有脱除水中氨氮和磷的双功能锆钠改性天然沸石(Zr-Na/Zeolite)。考察了Zr-Na/Zeolite在不同pH、氨氮和磷初始质量浓度和温度下对氨氮溶液、含磷溶液及氮磷共存溶液的吸附情况。结果表明,Zr-Na/Zeolite能够在保持Na改性沸石(Na/Zeolite)优良的吸附氨氮性能的基础上,极大地提高吸附磷的能力。在不同pH下,Zr-Na/Zeolite吸附氨氮和磷的效果呈现不同的规律。对于氨氮,水溶液pH在4~8时Zr-Na/Zeolite具有最佳吸附性能,最高吸附量达到4.5 mg/g。对于含磷阴离子,脱磷能力随pH的升高而降低,吸附量从pH=2时的4.71 mg/g降到pH=10时的2.20 mg/g。当Zr-Na/Zeolite投加量为0.2 g,氨氮和磷初始质量浓度从10 mg/L提高到200 mg/L时,氨氮和磷的吸附量分别从1.42和2.46 mg/g提高到11.60和11.80 mg/g。溶液温度从25℃升高到45℃时,氨氮的吸附量提高了10%,磷的吸附量提高了11%。磷和氨氮的吸附过程符合准二级动力学模型。0.1 mol/L Na OH和1.0 mol/L Na Cl混合溶液可以再生Zr-Na/Zeolite,循环吸附14次后,吸附效率几乎保持不变。  相似文献   

9.
为研究化学除磷药剂的种类及投加浓度对强化生物除磷系统(EBPR)处理效率的影响,采用以厌氧/好氧方式运行的SBR反应器,以人工配制废水为进水,通过长期试验,分别考察了FeCl_3和AlCl_3两种除磷药剂的投加对系统出水水质的影响。结果表明:随着化学除磷药剂投加浓度的增加,出水COD浓度逐渐降低,而氨氮去除率未随化学除磷药剂投加量的增加而产生明显的变化;低浓度(Fe~(3+)和Al~(3+)的投加浓度分别不大于8 mg/L和6 mg/L)化学除磷药剂将提高微生物活性,高浓度(Fe~(3+)和Al~(3+)的投加浓度分别为24 mg/L和18 mg/L时)产生抑制效果。长期试验中,当Fe~(3+)、Al~(3+)投加量分别为8 mg/L和6mg/L时,即Fe~(3+)、Al~(3+)投加量分别为8.6、7.0 mg/(g VSS)时,系统厌氧释磷量及好氧吸磷量均达到较大值,系统除磷效果最好,此时磷酸盐去除率分别为96.5%和89.5%。  相似文献   

10.
净水厂聚合氯化铝铁污泥对污水中磷的吸附作用   总被引:2,自引:0,他引:2  
采用控制变量法,逐一研究初始pH值、污泥投加量、初始磷浓度等条件下的聚合氯化铝铁(PAFC)污泥的磷吸附过程。结果表明,在pH值为4.59.0时,污泥对磷的吸附过程稳定,磷的去除率和单位质量污泥对磷的吸附量随pH值的下降而升高。磷的去除率随污泥投加量的增加而增大,随污水的初始磷浓度增大而减小。单位质量污泥磷吸附量随污泥投加量的增加而减小,随污水的初始磷浓度增大而增大。准二级动力学方程可以很好地描述污泥磷吸附过程。通过Langmuir和Freundlich吸附等温线方程发现,PAFC污泥具有较强的磷吸附能力,最大理论磷吸附量为6.049 mg/g。  相似文献   

11.
采用氯化锰对膨润土进行改性,并用于深度处理含铅废水,考察了吸附时间、溶液初始pH值及吸附剂投加量对Pb2+吸附率的影响。结果表明在原水中Pb2+的质量浓度为1 mg/L,pH值为6,吸附时间为40 min,吸附剂投加量为20 mg/L,混凝剂投加量为60 mg/L的条件下,Pb2+的吸附率达到95%以上,出水中Pb2+的质量浓度小于0.05 mg/L,满足GB 3838—2002《地表水环境质量标准》Ⅲ类标准的要求。  相似文献   

12.
为使出水TP达到《地表水环境质量标准》(GB 3838—2002)中Ⅳ类标准(TP≤0.3 mg/L),研究比较了FeCl_3、Al_2(SO_4)_3、FeCl_3和Al_2(SO_4)_3按n(Fe:Al)=3:1比例配制的复合除磷剂,以及复合除磷剂在分次投加方式下的除磷效果。结果表明:初始TP浓度为5 mg/L时,复合除磷剂比单独使用FeCl_3、Al_2(SO_4)_3除磷效果好,当除磷剂投加量为100 mg/L时,复合除磷剂磷去除率为96.4%,分别比Al_2(SO_4)_3、FeCl_3高出9.49%、1.68%;多次投加除磷剂时以二次和三次投加时效果较好,当复合除磷剂投加量为100 mg/L,二次投加除磷剂时,磷去除率为98.2%,比一次投加、三次投加时高出1. 8%、0.44%;实际水样连续流试验选择二次投加除磷剂,出水TP含量可稳定达到地表水Ⅳ类标准,并且出水浊度也从2.63 NTU降低至0.99 NTU,去除率达到了62.4%。综合考虑除磷剂消耗量和成本,选择复合除磷剂应用于实际生产较好,每处理1 t含磷量5mg/L的废水成本约为0.22元。  相似文献   

13.
以膨润土作为吸附剂处理甲基嘧啶磷废水,讨论了膨润土的种类、投加量、时间、pH值、温度等对甲基嘧啶磷某工段废水的处理效果的影响。结果表明,钠基膨润土的吸附效果较其它类型的膨润土效果好,其适宜吸附条件为:投加量5%,pH值3,反应温度20℃,搅拌60 min。反应结束后废水中2-二乙基氨基-6-甲基-4-羟基嘧啶的浓度从5 761 mg/L降至130 mg/L以下,COD浓度从12 500 mg/L降至4 233 mg/L以下。  相似文献   

14.
以松果作为吸附剂进行了去除废水中Cu2+、Pb2+、Zn2+的吸附及解吸试验,研究了溶液pH值、吸附剂投加量、反应时间、溶液初始浓度对吸附效果的影响,以及不同pH值对达到吸附平衡的松果的解吸影响。结果表明:当pH值为5.0~5.5,Cu2+、Pb2+、Zn2+初始质量浓度约为25 mg/L时,吸附剂的最佳投加量分别为3、1.5、3 g/L,去除率分别为55.32%、86%、39.96%。3种重金属离子的吸附动力学方程符合Lagergren准二级动力学方程,R2均大于0.998。等温吸附研究表明:Freundlich方程能较好地描述Cu2+的等温吸附过程,Langmuir方程则能更好地描述Pb2+和Zn2+的吸附过程,用Langmuir方程拟合等温吸附数据得出松果对Cu2+、Pb2+、Zn2+的最大吸附量分别为9.10、31.65和9.60 mg/g。强酸是一种理想的Cu2+和Zn2+解吸剂。  相似文献   

15.
王锐刚  成坚 《水处理技术》2013,39(1):97-100
采用改性粉煤灰为吸附剂,对生活污水中磷进行吸附脱磷试验,并研究粉煤灰粒径、投加量、pH、温度、振荡强度以及吸附时间等因素对脱磷效果的影响。结果表明,在粉煤灰粒径为0.075~0.096 mm、投加量为25 g/L、溶液pH为3.5、水温为50℃的条件下,对磷质量浓度为6.0 mg/L的生活污水,以140 r/min的强度振荡吸附120 min,磷的去除率可高达94.5%,水样中的磷质量浓度降至0.5 mg/L以下。  相似文献   

16.
通过共沉淀法制备了层状双金属氢氧化物Mg/Al/Fe-LDHs,考察了LDHs投加质量、苯酚初始质量浓度、溶液pH和反应温度(T)对苯酚吸附特性的影响。结果表明,LDHs投加质量为0.5 g、苯酚初始质量浓度为10 mg/L、pH=8.0、T=35℃最佳吸附条件下,平衡吸附量达17.41 mg/g。吸附过程符合一级动力学方程,吸附速率为0.021 7 min-1,平衡吸附量为9.30 mg/g。吸附前后材料的XRD和FT-IR表征结果表明,LDHs吸附苯酚机理不仅涉及表面吸附,还包括LDHs板层结构重建和羟基离子置换。  相似文献   

17.
考察了接触时间、pH、投加量对热改性铝污泥吸附磷的影响,确定了其最佳吸附条件和影响因素顺序。结果表明,除磷影响因素依次为磷溶液初始浓度接触时间溶液pH投加量,改性铝污泥吸附除磷的最佳条件:初始磷浓度为60.00 mg/L,pH值为3.0,投加量为4 g/L,振荡反应时间为4 h,改性铝污泥对磷的最高去除率达77.2%。  相似文献   

18.
比较了生石灰和锁磷剂对河流低含量TP的去除性能。结果表明,当投加质量浓度为0~15 mg/L时,生石灰和锁磷剂对TP均无明显去除效果,但生石灰可使系统pH升高,而锁磷剂对系统pH无影响。当两者投加质量浓度为20~200 mg/L时,锁磷剂系统内pH由8.5降至7.5,对TP去除率28.85%~92.31%,有效利用率2.4~9 mg/g;投加质量浓度在80~200 mg/L时去除率可达80%以上,出水TP质量浓度低于0.1 mg/L,生石灰系统内pH由8.5升至10以上,对TP去除率为16.67%~72.22%,有效利用率为1.9~4.38 mg/g;当投加质量浓度在180 mg/L左右时,去除率达最大,出水TP浓度为0.16 mg/L。锁磷剂的综合除磷性能更有优势,其对TP、溶解性磷酸盐都有持久去除作用,最终确定锁磷剂优化投加质量浓度为60 mg/L。  相似文献   

19.
以天然海泡石为原料,Fe SO4·4H2O和Fe Cl3·6H2O为改性剂,制备了磁改性海泡石并用于处理含Ni2+废水。考察了吸附时间、反应温度、p H和Ni2+初始质量浓度对磁改性海泡石对Ni2+吸附量的影响。结果显示,磁改性海泡石对Ni2+的吸附量随吸附时间、温度、p H与Ni2+初始质量浓度的增加而提高,吸附行为与二级动力学方程和Langmuir等温吸附模型拟合较好。对于Ni2+质量浓度为50 mg/L的废水,在25°C、p H=5的条件下,0.5 g磁改性海泡石对Ni2+的吸附量为2.95 mg/g。通过正交试验优选出适用于处理Ni2+质量浓度为68.48 mg/L的某镀镍车间漂洗废水的最佳条件为:温度65°C,p H 4.2,吸附剂投加量1.5 g,时间为1.5 h。最终Ni2+去除率为99.65%,出水Ni2+质量浓度为0.24 mg/L,远低于GB 21900–2008中表2规定的排放限值(0.5 mg/L)。  相似文献   

20.
对多家煤矿井下废水进行了采样分析,并对典型水样进行了混凝特性试验,考察了水样初始p H值、混凝剂投加量以及助凝剂投加量对混凝效果的影响。试验结果表明,偏酸性有助于PAC混凝效果的发挥。对浊度为1 395 NTU、SS的质量浓度为448 mg/L的煤矿井下废水,在PAC投加量为100 mg/L时,混凝对水样浊度和SS的去除率分别达到99.3%和95.5%。助凝剂PAM的加入对水样Zeta电位和电导率作用不显著,但能通过吸附架桥作用在PAC投加量较小时促进水中颗粒的沉降。当PAC投加量为40 mg/L,PAM投加量为2 mg/L时,对水中浊度和SS的去除率分别达到99.4%和96.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号