首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graph visualizations encode relationships between objects. Abstracting the objects into group structures provides an overview of the data. Groups can be disjoint or overlapping, and might be organized hierarchically. However, the underlying graph still needs to be represented for analyzing the data in more depth. This work surveys research in visualizing group structures as part of graph diagrams. A particular focus is the explicit visual encoding of groups, rather than only using graph layout to indicate groups implicitly. We introduce a taxonomy of visualization techniques structuring the field into four main categories: visual node attributes vary properties of the node representation to encode the grouping, juxtaposed approaches use two separate visualizations, superimposed techniques work with two aligned visual layers, and embedded visualizations tightly integrate group and graph representation. The derived taxonomies for group structure and visualization types are also applied to group visualizations of edges. We survey group‐only, group–node, group–edge and group–network tasks that are described in the literature as use cases of group visualizations. We discuss results from evaluations of existing visualization techniques as well as main areas of application. Finally, we report future challenges based on interviews we conducted with leading researchers of the field.  相似文献   

2.
体绘制技术在医学可视化中的新发展   总被引:13,自引:0,他引:13       下载免费PDF全文
科学计算可视化体绘制算法能反映出体数据的内部信息,在医学,它已经从辅诊断发展成为辅助治疗的重要手段,体可视化技术是医学可视化的重要研究内容,其处理过程包括体数据的获取,模型的建立,数据的映射,绘制等操作,该文介绍了医学可视化中常使用的几种光照模型,针对基于图象空间和对象空间两种体绘制算法,介绍了它们的基本思想方法,并详细阐述了在近期的主要加速技术和提高图象质量方法的新进展,最后给出了实验数据和结论。  相似文献   

3.
Volume exploration is an important issue in scientific visualization. Research on volume exploration has been focused on revealing hidden structures in volumetric data. While the information of individual structures or features is useful in practice, spatial relations between structures are also important in many applications and can provide further insights into the data. In this paper, we systematically study the extraction, representation, exploration, and visualization of spatial relations in volumetric data and propose a novel relation-aware visualization pipeline for volume exploration. In our pipeline, various relations in the volume are first defined and measured using region connection calculus (RCC) and then represented using a graph interface called relation graph. With RCC and the relation graph, relation query and interactive exploration can be conducted in a comprehensive and intuitive way. The visualization process is further assisted with relation-revealing viewpoint selection and color and opacity enhancement. We also introduce a quality assessment scheme which evaluates the perception of spatial relations in the rendered images. Experiments on various datasets demonstrate the practical use of our system in exploratory visualization.  相似文献   

4.
Tensors provide a powerful language to describe physical phenomena. Consequently, they have a long tradition in physics and appear in various application areas, either as the final result of simulations or as intermediate product. Due to their complexity, tensors are hard to interpret. This motivates the development of well‐conceived visualization methods. As a sub‐branch of scientific visualization, tensor field visualization has been especially pushed forward by diffusion tensor imaging. In this review, we focus on second‐order tensors that are not diffusion tensors. Until now, these tensors, which might be neither positive‐definite nor symmetric, are under‐represented in visualization and existing visualization tools are often not appropriate for these tensors. Hence, we discuss the strengths and limitations of existing methods when dealing with such tensors as well as challenges introduced by them. The goal of this paper is to reveal the importance of the field and to encourage the development of new visualization methods for tensors from various application fields.  相似文献   

5.
Over the past years, an increasing number of publications in information visualization, especially within the field of visual analytics, have mentioned the term “embedding” when describing the computational approach. Within this context, embeddings are usually (relatively) low-dimensional, distributed representations of various data types (such as texts or graphs), and since they have proven to be extremely useful for a variety of data analysis tasks across various disciplines and fields, they have become widely used. Existing visualization approaches aim to either support exploration and interpretation of the embedding space through visual representation and interaction, or aim to use embeddings as part of the computational pipeline for addressing downstream analytical tasks. To the best of our knowledge, this is the first survey that takes a detailed look at embedding methods through the lens of visual analytics, and the purpose of our survey article is to provide a systematic overview of the state of the art within the emerging field of embedding visualization. We design a categorization scheme for our approach, analyze the current research frontier based on peer-reviewed publications, and discuss existing trends, challenges, and potential research directions for using embeddings in the context of visual analytics. Furthermore, we provide an interactive survey browser for the collected and categorized survey data, which currently includes 122 entries that appeared between 2007 and 2023.  相似文献   

6.
Numeric time series is a class of data consisting of chronologically ordered observations represented by numeric values. Much of the data in various domains, such as financial, medical and scientific, are represented in the form of time series. To cope with the increasing sizes of datasets, numerous approaches for abstracting large temporal data are developed in the area of data mining. Many of them proved to be useful for time series visualization. However, despite the existence of numerous surveys on time series mining and visualization, there is no comprehensive classification of the existing methods based on the needs of visualization designers. We propose a classification framework that defines essential criteria for selecting an abstraction method with an eye to subsequent visualization and support of users' analysis tasks. We show that approaches developed in the data mining field are capable of creating representations that are useful for visualizing time series data. We evaluate these methods in terms of the defined criteria and provide a summary table that can be easily used for selecting suitable abstraction methods depending on data properties, desirable form of representation, behaviour features to be studied, required accuracy and level of detail, and the necessity of efficient search and querying. We also indicate directions for possible extension of the proposed classification framework.  相似文献   

7.
Unsteady scientific data is one of the top challenges in visualization, because a huge amount of information must be displayed. ϵ-machines are an information-theoretic concept; they compress the dynamics in the data set to a finite-state machine, in which nodes represent local flow patterns and edges represent transitions between them. Several enhancements to the fundamental ϵ-machine representation can help users identify interesting time intervals, analyze the evolution of unusual local dynamics, and track features over time. Automatically abstracting information from the original data is a first step toward knowledge-assisted visualization. Successive findings from analysis can help provide subsequent users with knowledge gained in earlier research, resulting in a knowledge-assisted system for the analysis of unsteady-flow features based on information theory. This article is part of a special issue on knowledge-assisted visualization.  相似文献   

8.
Research issues in volume visualization   总被引:6,自引:0,他引:6  
Volume visualization is a method of extracting meaningful information from volumetric data sets through the use of interactive graphics and imaging. It addresses the representation, manipulation, and rendering of volumetric data sets, providing mechanisms for peering into structures and understanding their complexity and dynamics. Typically, the data set is represented as a 3D regular grid of volume elements (voxels) and stored in a volume buffer (also called a cubic frame buffer), which is a large 3D array of voxels. However, data is often defined at scattered or irregular locations that require using alternative representations and rendering algorithms. There are eight major research issues in volume visualization: volume graphics, volume rendering, transform coding of volume data, scattered data, enriching volumes with knowledge, segmentation, real-time rendering and parallelism, and special purpose hardware  相似文献   

9.
复杂网络可视化研究综述   总被引:9,自引:1,他引:9  
当今万维网、社会关系网等复杂网络的规模迅速发展,一方面导致人们很难用数字和表格来对这些复杂网络进行全局规划和管理,另一方面复杂网络包含了非常丰富的信息资源但都难于被发现。可视化技术提供了有效的方法来理解复杂网络的结构并从中挖掘有效信息。本文全面介绍了复杂网络可视化技术的研究进展,讨论了可视化布点算法和压缩算法,并介绍了若干具有代表性的复杂网络可视化工具、列举了复杂网络可视化技术在相关领域的应用。  相似文献   

10.
Lark: Coordinating Co-located Collaboration with Information Visualization   总被引:1,自引:0,他引:1  
Large multi-touch displays are expanding the possibilities of multiple-coordinated views by allowing multiple people to interact with data in concert or independently. We present Lark, a system that facilitates the coordination of interactions with information visualizations on shared digital workspaces. We focus on supporting this coordination according to four main criteria: scoped interaction, temporal flexibility, spatial flexibility, and changing collaboration styles. These are achieved by integrating a representation of the information visualization pipeline into the shared workspace, thus explicitly indicating coordination points on data, representation, presentation, and view levels. This integrated meta-visualization supports both the awareness of how views are linked and the freedom to work in concert or independently. Lark incorporates these four main criteria into a coherent visualization collaboration interaction environment by providing direct visual and algorithmic support for the coordination of data analysis actions over shared large displays.  相似文献   

11.
This paper describes an approach to integrating various knowledge representations for classification problems. Knowledge representation forms have been analysed. The analysis shows that representation suitability depends on a given situation. Therefore, multiple representation form capability and form conversion capability are both necessary to support developing knowledge bases for wide application areas. A classification problem tool, called HOLON/VP(DT), has been developed with the aim of providing experts with the integrated knowledge representation capability. A knowledge base can be represented in a tabular form, a rule form and a tree form. Form conversion can be accomplished at all times. With this integrated representation, an expert is able to build a knowledge base using the most appropriate form.  相似文献   

12.
Setsuo Ohsuga 《Knowledge》1990,3(4):204-214
Currently available expert systems have a performance limit because of the lack of capability to describe problems and problem-solving methods. It is closely related with knowledge representation language, but this is not the only concern with this issue. Real world problems and problem-solving methods are not so simple as to be represented always in the same way by the same language. Their representations must be different depending on various factors involved in the problems themselves and the situations these problems are surrounded with. In this paper, the author discusses first the intrinsic nature of problem representation and problem-solving process representation. The requirements for and the conceptual framework of a knowledge-based system that is suited for dealing with various problems then become apparent quite naturally. The author asserts that a multiple meta-level architecture is necessary as well as a knowledge-representation language that can describe complex data structures as the basic framework of knowledge-based systems.  相似文献   

13.
Many well-cited theories for visualization design state that a visual representation should be optimized for quick and immediate interpretation by a user. Distracting elements like decorative "chartjunk" or extraneous information are avoided so as not to slow comprehension. Yet several recent studies in visualization research provide evidence that non-efficient visual elements may benefit comprehension and recall on the part of users. Similarly, findings from studies related to learning from visual displays in various subfields of psychology suggest that introducing cognitive difficulties to visualization interaction can improve a user's understanding of important information. In this paper, we synthesize empirical results from cross-disciplinary research on visual information representations, providing a counterpoint to efficiency-based design theory with guidelines that describe how visual difficulties can be introduced to benefit comprehension and recall. We identify conditions under which the application of visual difficulties is appropriate based on underlying factors in visualization interaction like active processing and engagement. We characterize effective graph design as a trade-off between efficiency and learning difficulties in order to provide Information Visualization (InfoVis) researchers and practitioners with a framework for organizing explorations of graphs for which comprehension and recall are crucial. We identify implications of this view for the design and evaluation of information visualizations.  相似文献   

14.
传统的关联规则表示方法无法展示概念之间的本质关系,缺少对概念层面的认识,忽略了知识发现结果的共享等问题,而概念格作为一种能够生动简洁地体现概念之间泛化和例化关系的数据结构,在对关联规则可视化和发现潜在知识方面也有着独特的优势。提出了以概念格为背景的关联规则可视化方法,以概念为查找单元,在概念格中寻找需要展示的关联规则路径,将属性之间的关联关系扩展到概念层面,并给出了相对应的多模式规则的可视化的策略与算法。结合某校图书馆借书记录数据,进行关联规则分析与可视化实现。实验结果表明,该可视化方法在知识发现和共享方面具有良好的效果。  相似文献   

15.
The Extended Hierarchical Censored Production Rules (EHCPRs) system is presented here as an underlying methodology for representation, reasoning, learning, etc., of the proposed live multilingual thinking machine. Enriched representation scheme is a very important aspect and central to all the successful and effective Artificial Intelligence systems. An EHCPR is presented here as a unit of represented knowledge (i.e. an artificial neuron) in the knowledge treasure distributed over globally spread servers. An EHCPR is implemented with the help of extensive set of predefined pointers like dendrites in a neuron and various nodes like nucleus in a neuron, which would span a huge but efficient multilingual hierarchical network as knowledge structure. The EHCPRs system is started live at www.live-ehcprs-system.com with multilingual representation and storage at word level only. But construction of words is by starting at character level without repetition in representation of a character. It displays the stored information of any stored concept in any of the selected language. To begin with, English, French and Hindi are offered to the user which would be extended to all the languages in future.  相似文献   

16.
Visualizing Demographic Trajectories with Self-Organizing Maps   总被引:1,自引:0,他引:1  
In recent years, the proliferation of multi-temporal census data products and the increased capabilities of geospatial analysis and visualization techniques have encouraged longitudinal analyses of socioeconomic census data. Traditional cartographic methods for illustrating socioeconomic change tend to rely either on comparison of multiple temporal snapshots or on explicit representation of the magnitude of change occurring between different time periods. This paper proposes to add another perspective to the visualization of temporal change, by linking multi-temporal observations to a geometric configuration that is not based on geographic space, but on a spatialized representation of n-dimensional attribute space. The presented methodology aims at providing a cognitively plausible representation of changes occurring inside census areas by representing their attribute space trajectories as line features traversing a two-dimensional display space. First, the self-organizing map (SOM) method is used to transform n-dimensional data such that the resulting two-dimensional configuration can be represented with standard GIS data structures. Then, individual census observations are mapped onto the neural network and linked as temporal vertices to represent attribute space trajectories as directed graphs. This method is demonstrated for a data set containing 254 counties and 32 demographic variables. Various transformations and visual results are presented and discussed in the paper, from the visualization of individual component planes and trajectory clusters to the mapping of different attributes onto temporal trajectories.  相似文献   

17.
曹存根  眭跃飞  孙瑜  曾庆田 《软件学报》2006,17(8):1731-1742
数学知识表示是知识表示中的一个重要方面,是数学知识检索、自动定理机器证明、智能教学系统等的基础.根据在设计NKI(national knowledge infrastructure)的数学知识表示语言中遇到的问题,并在讨论了数学对象的本体论假设的基础上提出了两种数学知识的表示方法:一种是以一个逻辑语言上的公式为属性值域的描述逻辑;另一种是以描述逻辑描述的本体为逻辑语言的一部分的一阶逻辑.在前者的表示中,如果对公式不作任何限制,那么得到的知识库中的推理不是可算法化的;在后者的表示中,以描述逻辑描述的本体中的推理是可算法化的,而以本体为逻辑语言的一部分的一阶逻辑所表示的数学知识中的推理一般是不可算法化的.因此,在表示数学知识时,需要区分概念性的知识(本体中的知识)和非概念性的知识(用本体作为语言表示的知识).框架或者描述逻辑可以表示和有效地推理概念性知识,但如果将非概念性知识加入到框架或知识库中,就可能使得原来可以有效推理的框架所表示的知识库不存在有效的推理算法,甚至不存在推理算法.为此,建议在表示数学知识时,用框架或描述逻辑来表示概念性知识;然后,用这样表示的知识库作为逻辑语言的一部分,以表示非概念性知识.  相似文献   

18.
Ranjan  V. Fournier  A. 《Computer》1994,27(7):28-36
Given a set of points on the boundary of an object derived from volumetric data, how can one represent the object and, in particular visualize it from these points? This problem is addressed by our research on the representation of points at the boundary of an object as a union of simple boundary primitives. We use volumetric data in the customary sense, but an additional feature for our purpose is the availability of an inside-outside test for any point within the volume. Our problem is, therefore, a restricted form of the general problem of visualizing an arbitrary cloud of points. Representing and visualizing can be vague concepts. As an intuitive example of the kind of representation we are looking for, assume we have data somehow representing a human head. In the first approximation, the head can be represented by a sphere. The surface area and the volume of the sphere give us rough, but useful, estimates of the corresponding properties for the head. At the same time, the position and radius of the sphere give us an idea of the translation and scaling to apply to get the head in some canonical position. If, instead, we fit an ellipsoid, the additional degrees of freedom might let us obtain the parameters of the rotations to apply. Of course, we cannot independently obtain estimates for the scaling, volume, or area. The obtainable estimates depend on the context. Whereas human perception deals very well with these ambiguities, computer visualization tends to fall short. The new representation of volumetric data based on union of spheres shows promise in achieving stability  相似文献   

19.
Abstract

Industry 4.0 aims at providing a digital representation of a production landscape, but the challenges in building, maintaining, optimizing, and evolving digital models in inter-organizational production chains have not been identified yet in a systematic manner. In this paper, various Industry 4.0 research and technical challenges are addressed, and their present scenario is discussed. Moreover, in this article, the novel concept of developing experience-based virtual models of engineering entities, process, and the factory is presented. These models of production units, processes, and procedures are accomplished by virtual engineering object (VEO), virtual engineering process (VEP), and virtual engineering factory (VEF), using the knowledge representation technique of Decisional DNA. This blend of the virtual and physical domains permits monitoring of systems and analysis of data to foresee problems before they occur, develop new opportunities, prevent downtime, and even plan for the future by using simulations. Furthermore, the proposed virtual model concept not only has the capability of Query Processing and Data Integration for Industrial Data but also real-time visualization of data stream processing.  相似文献   

20.
卷积神经网络表征可视化研究综述   总被引:2,自引:0,他引:2  
近年来,深度学习在图像分类、目标检测及场景识别等任务上取得了突破性进展,这些任务多以卷积神经网络为基础搭建识别模型,训练后的模型拥有优异的自动特征提取和预测性能,能够为用户提供“输入–输出”形式的端到端解决方案.然而,由于分布式的特征编码和越来越复杂的模型结构,人们始终无法准确理解卷积神经网络模型内部知识表示,以及促使其做出特定决策的潜在原因.另一方面,卷积神经网络模型在一些高风险领域的应用,也要求对其决策原因进行充分了解,方能获取用户信任.因此,卷积神经网络的可解释性问题逐渐受到关注.研究人员针对性地提出了一系列用于理解和解释卷积神经网络的方法,包括事后解释方法和构建自解释的模型等,这些方法各有侧重和优势,从多方面对卷积神经网络进行特征分析和决策解释.表征可视化是其中一种重要的卷积神经网络可解释性方法,能够对卷积神经网络所学特征及输入–输出之间的相关关系以视觉的方式呈现,从而快速获取对卷积神经网络内部特征和决策的理解,具有过程简单和效果直观的特点.对近年来卷积神经网络表征可视化领域的相关文献进行了综合性回顾,按照以下几个方面组织内容:表征可视化研究的提起、相关概念及内容、可视化方法、...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号