首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hafnium oxide films were RF sputtered from HfO2 target in Ar/O2 or Ar/N2 ambient on silicon substrates. The composition of the deposited films was analyzed by X-ray photoelectron spectroscopy (XPS). For samples sputtered in Ar/N2, it was observed that nitrogen was incorporated in the bulk of hafnium oxide films in the form of HfON, and SiON layer was formed at the silicon-insulator interface. After annealing the hafnium oxide films at 600-700 °C, MOS structures were fabricated and used for electrical characterization. The effects of nitridation of hafnium oxide on both the capacitance-voltage and current-voltage characteristics of the MOS capacitors were discussed.  相似文献   

2.
The physical and electrical properties of hafnium oxide (HfO2) thin films deposited by high pressure reactive sputtering (HPRS) have been studied as a function of the Ar/O2 ratio in the sputtering gas mixture. Transmission electron microscopy shows that the HfO2 films are polycrystalline, except the films deposited in pure Ar, which are amorphous. According to heavy ion elastic recoil detection analysis, the films deposited without using O2 are stoichiometric, which means that the composition of the HfO2 target is conserved in the deposition films. The use of O2 for reactive sputtering results in slightly oxygen-rich films. Metal-Oxide-Semiconductor (MOS) devices were fabricated to determine the deposited HfO2 dielectric constant and the trap density at the HfO2/Si interface (Dit) using the high–low frequency capacitance method. Poor capacitance–voltage (CV) characteristics and high values of Dit are observed in the polycrystalline HfO2 films. However, a great improvement of the electrical properties was observed in the amorphous HfO2 films, showing dielectric constant values close to 17 and a minimum Dit of 2×1011 eV−1 cm−2.  相似文献   

3.
The as-deposited and annealed radio frequency reactive magnetron sputtered tantalum oxide (Ta2O5) films were characterized by studying the chemical binding configuration, structural and electrical properties. X-ray photoelectron spectroscopy and X-ray diffraction analysis of the films elucidate that the film annealed at 673 K was stoichiometric with orthorhombic β-phase Ta2O5. The dielectric constant values of the tantalum oxide capacitors with the sandwich structure of Al/Ta2O5/Si were in the range from 14 to 26 depending on the post-deposition annealing temperature. The leakage current density was <20 nA cm?2 at the gate bias voltage of 0.04 MV/cm for the annealed films. The electrical conduction mechanism observed in the films was Poole–Frenkel.  相似文献   

4.
Continuous down-scaling of silicon based transistors results in device lengths of less than 100 nm. This requires a reduction of the gate dielectric thickness to less than 15Å which is not possible for SiO2 due to an increasing leakage current. One of the most promising candidates for a replacement material for the gate dielectric is HfO2 [Wilk GD, Wallace RM, Anthony JM. J Appl Phys 2001; 89:5243].In this work we applied X-ray photoelectron spectroscopy (XPS) and photoelectron diffraction measurements in order to study the interface of hafnium oxide to Si(1 0 0). The high resolution measurements were performed with synchrotron radiation at beamlines 5 and 11 at DELTA (Dortmund). For the first time, photoelectron diffraction patterns for this system were recorded. The spectral resolution allowed to separate different spectral components.The preparation of hafnium oxide films on Si(1 0 0) was performed by evaporation of hafnium at a partial oxygen background pressure of . Three different spectral components were observed in the hafnium 4f photoemission signal by high resolution XPS. The photoelectron signals with binding energies shift of 3.1 and 1.2 eV with respect to signal of hafnium silicide were assigned to hafnium dioxide and hafnium silicate, respectively. The corresponding high-resolution diffraction patterns result from different local environments for each component. The experimental patterns are compared with simulations for a model structure of hafnium silicide.  相似文献   

5.
In this work we investigate the dielectric properties of hafnium oxide deposited by RF magnetron sputtering with the purpose to implement it as control oxide for non-volatile memories based on metallic nanoparticles as charge storage centers. The influence of deposition temperature, ambient and post-deposition annealing onto the trapping properties of hafnium oxide, deposited over a tunneling silicon oxide layer, will be discussed and optimized conditions under which no charge trapping is observed into the dielectric stack will be presented.  相似文献   

6.
Ultra-thin films of hafnium oxide deposited on Si(1 0 0) substrates by means of atomic layer deposition using tetrakis(diethylamino)hafnium as the hafnium precursor are characterized. These films and interface structures are probed using Fourier transform infrared spectroscopy along with Z-contrast imaging and electron energy loss spectroscopy (EELS) of a scanning transmission electron microscope. The interface structure of HfO2/Si(1 0 0) is further investigated using angle resolved X-ray photoelectron spectroscopy to probe the core level orbitals (Hf 4f, Si 2p, O 1s) at high resolution. The interfacial differences are also examined by probing the Hf 4f bonding with normal incidence XPS in thin and thick films. The XPS studies show that the binding energies remain unchanged with film depth and that there is no apparent signature of silicate structure in the as-deposited films. EELS spectra taken at the interface and XPS measurements suggest the interface is mainly silicon oxide. Two different cleaning methods used show difference only in the thickness of the silicon oxide interlayer.  相似文献   

7.
Indium zinc oxide (IZO) films with surface roughness Ra<0.3 nm have been prepared by radio frequency sputtering. The IZO film is the possible candidate for replacing the indium tin oxide (ITO) film in pattern precision or low processing temperature concern. Instead of commonly used In2O3:ZnO=90:10 in weight percentage (wt%) target, a target doped with 5 wt% impurities was used in this study. It was found that the electrical resistivity of the IZO film increases rapidly if oxygen gas was introduced during the sputtering process. This increase tendency in electrical resistivity is much more significant than the IZO film prepared with a 10 wt% doped ZnO target. The electrical resistivity increased rapidly as soon as the IZO film became crystallized in heat treatment. Optical properties of the IZO film do not change significantly with varying process parameters. The appropriate processing condition for the prepared IZO film is no oxygen feeding and no heat treatment.  相似文献   

8.
This paper addresses the effects of substrate temperature on electrical and structural properties of dc magnetron sputter-deposited copper (Cu) thin films on p-type silicon. Copper films of 80 and 500 nm were deposited from Cu target in argon ambient gas pressure of 3.6 mTorr at different substrate temperatures ranging from room temperature to 250 °C. The electrical and structural properties of the Cu films were investigated by four-point probe and atomic force microscopy. Results from our experiment show that the increase in substrate temperature generally promotes the grain growth of the Cu films of both thicknesses. The RMS roughness as well as the lateral feature size increase with the substrate temperature, which is associated with the increase in the grain size. On the other hand, the resistivity for 80 nm Cu film decreases to less than 5 μΩ-cm at the substrate temperature of 100 °C, and further increase in the substrate temperature has not significantly decreased the film resistivity. For the 500 nm Cu films, the increase in the grain size with the substrate temperature does not conform to the film resistivity for these Cu films, which show no significant change over the substrate temperature range. Possible mechanisms of substrate-temperature-dependent microstructure formation of these Cu films are discussed in this paper, which explain the interrelationship of grain growth and film resistivity with elevated substrate temperature.  相似文献   

9.
This work refers to the electro-optical and structural characteristics of titanium oxide (TiOx) thin films produced by radio frequency (r.f.) magnetron sputtering that present promising performances for gate dielectric applications, alone or in mixed tandem structures, such as with AlyOz films, taking advantage of its high dielectric constant. Films produced with a O2/Ar ratio between 0.1 and 0.15 present an improved stochiometry and density where the resistivity overcomes 1011 Ω cm and the fixed charge density decreases below 1012 cm−2. The deposition pressure influences greatly the growth rate that seems to be a determinant factor dictating the films properties.  相似文献   

10.
The current-voltage (I-V) characteristics of metal-oxide-semiconductor (MOS) structures with hafnium oxide as the gate dielectric film were studied. Sharp shifts from a low-voltage ohmic regime to a tunneling conduction were observed in the high-voltage range. The paper demonstrates that this behavior can be described very well with a double-layer dielectric model. Excellent fittings of the experimental curves were obtained and the related key structural and physical parameters were obtained. The model fitting further suggests the optimal annealing conditions for preparing the hafnium oxide films.  相似文献   

11.
The paper reports on electrical and optical investigations performed on HfO2 high-k films deposited by Metal-organic chemical vapor deposition (MOCVD). Spectroellipsometry investigations show the presence of a transition layer between HfO2 and the silicon substrate, which can be optically modelled as a mixture of Si and SiO2; this information is further used in the assessment of the electrical measurements. Hysteresis effects have been observed in the Capacitance–Voltage (CV) measurements for the as-deposited sample as well as the annealed samples. For the samples with large hysteresis, Poole–Frenkel (PF) conduction is the most likely dominant conduction mechanism. The energy of dominant trap level was found to be 0.7 eV.  相似文献   

12.
Cu-based semiconductors Cu2FeSnSe4 (CFTSe) and Cu(In, Al)Se2 (CIAS) have been fabricated using radio-frequency magnetron sputtering combined with rapid thermal selenization processing. For CFTSe, the heating rate ranging from 60 to 150 °C/min results in a difference in structure, morphology and optical properties. Thin film exhibits a pure phase structure, smooth surface and a band gap of 1.19 eV as the heating rate elevated to 90 °C/min. Furthermore, the CFTSe thin film selenized at 90 °C/min own the smallest value of cell volume compared with the others samples, which represents a more stable structure. In terms of the other Cu-based material CIAS, three different selenization pressures, i.e., 1, 5 and 10 Torr, have been employed for CIAS preparation. Thin film transforms into single phase with dense morphology along with the pressure of 1 Torr. The diverse band gap of CIAS thin films from 1.34 to 2.18 eV attribute to two reasons: (i) the various Al content will affect the hybridization degree of Al–Se, and finally tunes the band structure, (ii) amounts of CuSe has a certain degree of effect on the band gap of the CIAS. In addition, the electrical properties of CFTSe and CIAS are also researched with the open circuit voltage (Voc) of 94 and 365 mV, respectively, signifying potential applications of CFTSe and CIAS for the thin film solar cells.  相似文献   

13.
We have investigated the effects of oxidation temperature on the physical properties of polycrystalline zinc oxide thin films. Zinc thin films are oxidized at different temperatures in air. We have found that increasing the oxidation temperature deteriorates the preferred c-axis orientation. Also, increasing the oxidation temperature enlarges the crystal size and increases the number of needle-shaped crystals on the surface of the ZnO samples. By increasing the oxidation temperature, more than zinc melting point, tensile stresses start to build up in the films. Also by increasing temperature, sheet resistance of the films decreases, while photoluminescence intensity ratio (green to orange) increases. Increasing the oxidation temperature reduces the transparency of the films, too. It is proposed that either an increase in the number of oxygen vacancies or a decrease in the volume of grain boundaries, is responsible for the observed behavior of the films at higher oxidation temperatures.  相似文献   

14.
The interface properties of the anodic oxide/n-type (111) InP metal oxide semiconductor (MOS) structures significantly improved while using the polishing agent HBr:K2Cr2O7:H2O (BCA). Annealing at 250°C dehydrates the grown oxides and has a strong effect on the surface potential. Composition of the oxides analyzed using x-ray photoelectron spectroscopy showed that the oxides are composed of In2O3, InPO3, and InPO4. MOS structures fabricated on BCA polished substrates show a lower surface state density of 6 × 1010 cm−2 eV−1 when compared to the substrates polished with bromine-methanol (8 × 1010 cm−2 eV−1).  相似文献   

15.
吴家松  刘兴中 《半导体学报》2009,30(11):114004-4
This paper investigates the feasibility of using a lanthanum oxide thin film (La2O3) with a high dielectric constant as a gate dielectric on GaAs pHEMTs to reduce gate leakage current and improve the gate to drain breakdown voltage relative to the conventional GaAs pHEMT. An E/D mode pHEMT in a single chip was realized by selecting the appropriate La2O3 thickness. The thin La2O3 film was characterized: its chemical composition and crystalline structure were determined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. La2O3 exhibited good thermal stability after post-deposition annealing at 200, 400 and 600℃ because of its high binding-energy (835.6 eV). Experimental results clearly demonstrated that the La2O3 thin film was thermally stable. The DC and RF characteristics of Pt/La2O3/Ti/Au gate and conventional Pt/Ti/Au gate pHEMTs were examined. The measurements indicated that the transistor with the Pt/La2O3/Ti/Au gate had a higher breakdown voltage and lower gate leakage current. Accordingly, the La2O3 thin film is a potential high-k material for use as a gate dielectric to improve electrical performance and the thermal effect in high-power applications.  相似文献   

16.
Wu Chia-Song  Liu Hsing-Chung 《半导体学报》2009,30(11):114004-114004-4
This paper investigates the feasibility of using a lanthanum oxide thin film (La_2O_3) with a high dielectric constant as a gate dielectric on GaAs pHEMTs to reduce gate leakage current and improve the gate to drain breakdown voltage relative to the conventional GaAs pHEMT. An E/D mode pHEMT in a single chip was realized by selecting the appropriate La_2O_3 thickness. The thin La_2O_3 film was characterized: its chemical composition and crystalline structure were determined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively.La_2O_3 exhibited good thermal stability after post-deposition annealing at 200, 400 and 600 ℃ because of its high binding-energy (835.6 eV). Experimental results clearly demonstrated that the La_2O_3 thin film was thermally stable.The DC and RF characteristics of Pt/La_2O_3/Ti/Au gate and conventional Pt/Ti/Au gate pHEMTs were examined.The measurements indicated that the transistor with the Pt/La_2O_3/Ti/Au gate had a higher breakdown voltage and lower gate leakage current. Accordingly, the La_2O_3 thin film is a potential high-k material for use as a gate dielectric to improve electrical performance and the thermal effect in high-power applications.  相似文献   

17.
In this work, vertical Schottky barrier diodes (SBDs) were fabricated using a thin film of ZnO (50 nm) and PEDOT:PSS deposited by RF Sputtering and micro-drop casting, respectively. ITO and Au were used as ohmic contacts to ZnO and PEDOT:PSS films, respectively. The final structure consisted on Glass/ITO/ZnO/PEDOT:PSS/Au. The SBDs performance was characterized under dark and four different wavelengths conditions. From current–voltage characteristics, under dark and ambient conditions, a diode ideality factor of 1.4; a saturation current density of 1×10−9 A/cm2; a Schottky barrier height of 0.9 eV and a rectification ratio of 5 orders of magnitude at ±1 V were obtained. A carrier density of 5×1017 cm−3 for the ZnO film was estimated from capacitance–voltage measurements. For their characterization as photodiodes, the SBDs were illuminated with an ultra-bright UV (~380 nm) LED. A maximum UV responsivity of 0.013 A/W was obtained. The transient response of the SBDs was also analyzed with the UV LED connected to a pulsed signal of 0.5 Hz, demonstrating rise and fall times in the order of 200 ms. With a low temperature processing (<80 °C), visible-blind and UV photon-detection characteristics, the fabricated SBDs are candidates for flexible optoelectronics devices such as optical receivers for digital signal processing and measurement of light intensity.  相似文献   

18.
AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors(MIS-HEMTs) on a silicon substrate were fabricated with silicon oxide as a gate dielectric by sputtering deposition and electron-beam(EB) evaporation. It was found that the oxide deposition method and conditions have great influences on the electrical properties of HEMTs. The low sputtering temperature or oxygen introduction at higher temperature results in a positive equivalent charge density at the oxide/AlGaN interface(Nequ), which induces a negative shift of threshold voltage and an increase in both sheet electron density(ns) and drain current density(ID). Contrarily, EB deposition makes a negative Nequ, resulting in reduced ns and ID. Besides, the maximum transconductance(gm-max) decreases and the off-state gate current density(IG-off) increases for oxides at lower sputtering temperature compared with that at higher temperature, possibly due to a more serious sputter-induced damage and much larger Nequ at lower sputtering temperature. At high sputtering temperature, IG-off decreases by two orders of magnitude compared to that without oxygen, which indicates that oxygen introduction and partial pressure depression of argon decreases the sputter-induced damage significantly. IG-off for EB-evaporated samples is lower by orders of magnitude than that of sputtered ones, possibly attributed to the lower damage of EB evaporation to the barrier layer surface.  相似文献   

19.
ZnO films were prepared by filtered cathodic vacuum arc technique with Zn target at different substrate temperatures. The crystallinity is enhanced with increasing substrate temperature and preferably oriented at (1 0 3) direction when the substrate temperature is higher than 230°C. The PL emission corresponding to the exciton transition at 3.37 eV can be observed at room temperature, which indicates that high-quality films have been obtained by this technique. The Hall mobility, which increases with substrate temperature, is dominated by grain boundary scattering.  相似文献   

20.
利用反应磁控溅射法沉积了ZrO2介电薄膜,研究了退火温度对ZrO2介电薄膜电学性能的影响,并对漏电流最小的样品的漏电流机制进行了分析。结果表明,随着退火温度的升高,漏电流先减小后增大,退火温度为300℃时所制备薄膜的漏电流最小,当所加电压为–1.4 V时,漏电流密度为8.32×10–4 A/cm2。当所加正偏压为0-0.8 V和0.8-4.0 V时,该样品的漏电流主导机制分别为肖特基发射和直接隧穿电流;当所加负偏压为–1.7-0 V和–4.0-–1.7 V时,其主导机制分别为肖特基发射和空间电荷限制电流。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号