首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
以Ar^31泵浦的钛宝石激光器作为泵浦源,研究了Nd:GdVO4晶体微片的激光性能。晶片厚度为1mm,一端镀1.06μm高反膜与808nm增透膜,另一端镀1.06μm部分反射膜(T=1%),构成平-平谐振腔。该激光器的阈值泵浦功率低至18mW,斜效率达到50.7%,光-光转换效率为47.9%。测试了Nd:GdVO4晶体微片的吸收系数和荧光寿命,分别为32.7cm^-1(π向)和120μs。  相似文献   

2.
激光二极管抽运Nd:GdVO4微片激光器   总被引:3,自引:2,他引:3  
报道了一种新型激光二极管(LD)端面抽运Nd:GdVO4微片激光器,测量了抽运输入功率与激光输出功率的关系,激光阈值功率为83mw,在2W的抽运功率下得到860mw的1.064μm基横模连续激光输出,光-光转换效率为43%,最大斜度效率达到47%。  相似文献   

3.
抽运光分布对Nd:YAG微片激光器热效应的影响   总被引:8,自引:5,他引:3  
史彭  李金平  李隆  甘安生 《中国激光》2008,35(5):643-646
以半解析热分析理论为基础,研究超高斯分布激光二极管(LD)端面抽运背冷式微片Nd:YAG晶体的热效应。通过对超高斯分布激光二极管端面抽运背冷式微片Nd:YAG晶体工作特点分析建立热模型,利用热传导方程新的求解方法得出微片Nd:YAG晶体内部温度场、热形变场、附加光程差(OPD)半解析计算表达式;利用附加光程差得出微片Nd:YAG晶体的热焦距计算表达式。研究结果表明,当使用总功率为24.2 kW,10%占空比4阶超高斯分布激光二极管抽运时,微片上获得70.36℃最高温升,0.465μm最大热形变,0.836μm最大附加光程差。  相似文献   

4.
激光二极管抽运Nd∶GdVO_4微片激光器   总被引:1,自引:2,他引:1  
报道了一种新型激光二极管(LD)端面抽运Nd∶GdVO4微片激光器,测量了抽运输入功率与激光输出功率的关系,激光阈值功率为83 mW,在2 W的抽运功率下得到860 mW的1.064μm基横模连续激光输出,光-光转换效率为43%,最大斜度效率达到47%。  相似文献   

5.
以解析热分析理论为基础,建立了平板Nd:GdVO<,4>激光晶体在激光二极管阵列端面抽运时的导热微分方程.通过对方程的求解,得到了Nd:GdVO<,4>晶体内部温度场解析式和热透镜焦距随抽运光半径和功率变化的分布关系.温度场的数值模拟表明:当泵浦光功率P=30W、泵浦区域为1 mm×1 mm时,晶体在x,y,z方向的最...  相似文献   

6.
邹晶  赵圣之  杨克建  李桂秋 《激光技术》2006,30(4):422-424,428
为研究Nd:GdVO4晶体在激光二极管(LD)端面抽运固体激光器中的热效应,给出了一种测量激光器稳态运转时腔内激活介质热透镜焦距的简便方法。采用CCD光束分析仪直接测量输出光束的膨因子及束腰大小,根据混合模类高斯光束传输理论推导出相应的基模高斯光束束腰大小,由此利用稳定谐振腔的传输矩阵理论可得到相应的激光介质的热焦距。实验结果表明,抽运功率越高,热焦距越小,热效应对输出光束质量影响越严重。基于上述原理,对LD端面抽运的Nd:GdVO4固体激光器热透镜焦距进行了测量,实验结果和理论分析相符。  相似文献   

7.
光纤耦合LD端面抽运Nd:GdVO4晶体材料热效应分析   总被引:1,自引:3,他引:1  
为了研究半导体激光器端面抽运激光晶体产生的热效应问题,采用解析分析的方法研究端面抽运激光晶体的温升以及热形变量的大小.通过激光晶体工作特点分析,考虑到Nd:GdVO_4晶体热传导各向异性的特点,采用各向异性传热的Poisson方程,得出了超高斯光束端面抽运Nd:GdVO_4晶体温度场以及热形变场的一般解析表达式.并定量分析了超高斯光束不同阶次、不同光斑尺寸抽运时对于Nd:GdVO_4晶体温度场以及热形变场的影响.结果表明,若半导体激光器的输出功率为30W,光学聚焦耦合器传输效率为85%,5阶超高斯光束沿中心端面抽运掺钕离子原子数分数为0.012的Nd:GdVO_4晶体,抽运面可获得419.3℃的最大温升,并产生0.711μm的热形变.该结果对估算Nd:GdVO_4晶体热焦距变化范围以及进行热不敏谐振腔设计具有理论指导作用.  相似文献   

8.
研究了在不同透过率被动调Q情况下,全固态Nd:GdVO4激光器输出功率和脉宽随泵浦功率变化的关系,在静态情况下得到了光光转换效率为53%的激光输出。并且得到最小调Q脉宽27.29 ns。  相似文献   

9.
董武威  李隆  史彭  许启明 《激光技术》2009,33(6):633-637
为了研究半导体激光器端面抽运激光晶体产生的热效应问题,采用解析分析的方法研究端面抽运激光晶体的温升以及热形变量的大小.通过激光晶体工作特点分析,考虑到Nd:GdVO4晶体热传导各向异性的特点,采用各向异性传热的Poisson方程,得出了超高斯光束端面抽运Nd:GdVO4晶体温度场以及热形变场的一般解析表达式.并定量分析了超高斯光束不同阶次、不同光斑尺寸抽运时对于Nd:GdVO4晶体温度场以及热形变场的影响.结果表明,若半导体激光器的输出功率为30W,光学聚焦耦合器传输效率为8%,阶超高斯光束沿中心端面抽运掺钕离子原子数分数为0.012的Nd:GdVO4晶体,抽运面可获得419.3℃的最大温升,并产生0.711m的热形变.该结果对估算Nd:GdVO4晶体热焦距变化范围以及进行热不敏谐振腔设计具有理论指导作用.  相似文献   

10.
基于解析各向异性分析理论,研究了矩形横截面Nd:YVO4激光晶体受到具有高斯分布LD端面抽运时的激光晶体温度场分布和抽运面热形变分布.通过LD抽运Nd:YVO4激光晶体工作特点分析,建立了符合激光晶体工作状态的热模型,利用各向异性介质热传导方程的一种求解方法,得出了矩形截面Nd:YVO4晶体的温度场、热应变场和端面热形变场的通解表达式,分析了各向异性热参量对Nd:YVO4激光晶体热应变场的定量影响.研究结果表明:当使用输出功率为15 W LD端面中心入射Nd:YVO4晶体(Nd3 浓度0.5 atm%)时,在抽运端面中心获得244.9℃最高温升和1.99μm最大热形变量.  相似文献   

11.
本文利用尾纤输出的半导体激光器泵浦Nd:YVO4激光晶体,获得连续的1064nm激光输出;进行腔内Cr^4 :YAG晶体调Q和KTP晶体腔内倍频,获得了脉宽约40ns、平均功率107mw、重复率12kHz的532nm微脉冲激光输出。  相似文献   

12.
增益开关型Nd3+:YVO4微片激光器的研究   总被引:2,自引:1,他引:2  
利用增益开关技术调制LD抽运的Nd3+:YVO4微片激光器,实现了脉宽在60~140 ns连续可调、高重复频率的稳定、单模激光脉冲,重复频率在1~1 kHz精确可控,能够根据不同的需要直接或整形后作为种子光源.分析了LD驱动电流及调制宽度对激光脉冲宽度的影响,得出驱动电流和调制宽度的乘积越大,所得激光脉冲宽度越窄的结论.  相似文献   

13.
大功率激光二极管泵浦全固态Nd:YVO4微片激光器   总被引:5,自引:0,他引:5  
李健  何京良 《光电子.激光》1999,10(5):395-396,404
本文报道了一种大功率激光二极管端面泵清的全固态Nd:YVO4微片激光器。在泵浦功率为11.9W时,获得7.2W的1064nm波长的TEM00模激光输出,光-光转换效率达到60%,激光斜效率达到65%。  相似文献   

14.
研究了激光二极管(LD)端面高功率偏心抽运矩形截面激光晶体引起的热效应,提出偏心抽运矩形截面偏心度(ERS)的定义.通过求解周边恒温冷却Nd:GdYVO4激光晶体泊松热传导方程,得出了偏心度对晶体内部温度场的影响,以及温度梯度场的分布.研究表明:与中心抽运相比,偏心抽运时,激光晶体端面的最高温度有所降低,但温度梯度最高值升高,热畸变严重.  相似文献   

15.
在解析热分析理论的基础上,建立了平板Nd:LuVO4激光晶体在激光二极管阵列侧面抽运时的导热微分方程.通过对方程的求解,得到了Nd:LuVO4晶体内部温度场解析式,热形变场分布、温度场和热形变场的数值模拟表明,当抽运光功率为40W,抽运区域为1 mm×4 mm时,晶体在x方向的最高相对温升为11.63 K,y和z方向的最高温升为11.00 K;在x,y,z三方向上的热形变量分别为0.050μm,0.034 μm和0.48μm.这一结果可为Nd:LuVO4激光器设计提供理论支持.  相似文献   

16.
基于石墨烯被动调Q Nd:YAG晶体微片激光器   总被引:1,自引:0,他引:1  
曹镱  刘佳  刘江  王璞 《中国激光》2012,39(2):202009
设计了以石墨烯作为可饱和吸收体的被动调Q掺钕钇铝石榴石晶体(Nd:YAG)微片激光器。该激光器采用三明治结构,附有石墨烯薄层的YAG晶体紧密压贴于工作物质Nd:YAG晶体上,晶体端面镀膜作为端面镜构成平行平面谐振腔。采用光纤耦合输出激光二极管端面抽运技术,利用石墨烯的可饱和吸收作用,在注入功率为1.17 W时实现微片激光器的调Q运转,获得波长1064.6 nm,重复频率300~807 kHz可调,最小脉冲宽度75 ns的激光输出。激光器最大输出功率38.4 mW,最大单脉冲能量54.7 nJ。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号