首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Providing top-k typical relevant keyword queries would benefit the users who cannot formulate appropriate queries to express their imprecise query intentions. By extracting the semantic relationships both between keywords and keyword queries, this paper proposes a new keyword query suggestion approach which can provide typical and semantically related queries to the given query. Firstly, a keyword coupling relationship measure, which considers both intra- and inter-couplings between each pair of keywords, is proposed. Then, the semantic similarity of different keyword queries can be measured by using a semantic matrix, in which the coupling relationships between keywords in queries are reserved. Based on the query semantic similarities, we next propose an approximation algorithm to find the most typical queries from query history by using the probability density estimation method. Lastly, a threshold-based top-k query selection method is proposed to expeditiously evaluate the top-k typical relevant queries. We demonstrate that our keyword coupling relationship and query semantic similarity measures can capture the coupling relationships between keywords and semantic similarities between keyword queries accurately. The efficiency of query typicality analysis and top-k query selection algorithm is also demonstrated.  相似文献   

2.
Why-not and why questions can be posed by database users to seek clarifications on unexpected query results. Specifically, why-not questions aim to explain why certain expected tuples are absent from the query results, while why questions try to clarify why certain unexpected tuples are present in the query results. This paper systematically explores the why-not and why questions on reverse top-k queries, owing to its importance in multi-criteria decision making. We first formalize why-not questions on reverse top-k queries, which try to include the missing objects in the reverse top-k query results, and then, we propose a unified framework called WQRTQ to answer why-not questions on reverse top-k queries. Our framework offers three solutions to cater for different application scenarios. Furthermore, we study why questions on reverse top-k queries, which aim to exclude the undesirable objects from the reverse top-k query results, and extend the framework WQRTQ to efficiently answer why questions on reverse top-k queries, which demonstrates the flexibility of our proposed algorithms. Extensive experimental evaluation with both real and synthetic data sets verifies the effectiveness and efficiency of the presented algorithms under various experimental settings.  相似文献   

3.
Uncertain data is inherent in a few important applications. It is far from trivial to extend ranking queries (also known as top-k queries), a popular type of queries on certain data, to uncertain data. In this paper, we cast ranking queries on uncertain data using three parameters: rank threshold k, probability threshold p, and answer set size threshold l. Systematically, we identify four types of ranking queries on uncertain data. First, a probability threshold top-k query computes the uncertain records taking a probability of at least p to be in the top-k list. Second, a top-(k, l) query returns the top-l uncertain records whose probabilities of being ranked among top-k are the largest. Third, the p-rank of an uncertain record is the smallest number k such that the record takes a probability of at least p to be ranked in the top-k list. A rank threshold top-k query retrieves the records whose p-ranks are at most k. Last, a top-(p, l) query returns the top-l uncertain records with the smallest p-ranks. To answer such ranking queries, we present an efficient exact algorithm, a fast sampling algorithm, and a Poisson approximation-based algorithm. To answer top-(k, l) queries and top-(p, l) queries, we propose PRist+, a compact index. An efficient index construction algorithm and efficacious query answering methods are developed for PRist+. An empirical study using real and synthetic data sets verifies the effectiveness of the probabilistic ranking queries and the efficiency of our methods.  相似文献   

4.
A reverse k-nearest neighbor (RkNN) query retrieves the data points which regard the query point as one of their respective k nearest neighbors. A bi-chromatic reverse k-nearest neighbor (BRkNN) query is a variant of the RkNN query, considering two types of data. Given two types of data G and C, a BRkNN query regarding a data point q in G retrieves the data points from C that regard q as one of their respective k-nearest neighbors among the data points in G. Many existing approaches answer either the RkNN query or the BRkNN query. Different from these approaches, in this paper, we make the first attempt to propose a top-n query based on the concept of BRkNN queries, which ranks the data points in G and retrieves the top-n points according to the cardinalities of the corresponding BRkNN answer sets. For efficiently answering this top-n query, we construct the Voronoi Diagram of G to index the data points in G and C. From the information associated with the Voronoi Diagram of G, the upper bound of the cardinality of the BRkNN answer sets for each data point in G can be quickly computed. Moreover, based on an existing approach to answering the RkNN query and the characteristics of the Voronoi Diagram of G, we propose a method to find the candidate region regarding a BRkNN query, which tightens the corresponding search space. Finally, based on the triangle inequality, we propose an efficient refinement algorithm for finding the exact BRkNN answers from the candidate regions. To evaluate our approach on answering the top-n query, it is compared with an approach which applies a state-of-the-art algorithm for answering the BRkNN query to each data point in G. The experiment results reveal that our approach has a much better performance.  相似文献   

5.
Searching XML data with a structured XML query can improve the precision of results compared with a keyword search. However, the structural heterogeneity of the large number of XML data sources makes it difficult to answer the structured query exactly. As such, query relaxation is necessary. Previous work on XML query relaxation poses the problem of unnecessary computation of a big number of unqualified relaxed queries. To address this issue, we propose an adaptive relaxation approach which relaxes a query against different data sources differently based on their conformed schemas. In this paper, we present a set of techniques that supports this approach, which includes schema-aware relaxation rules for relaxing a query adaptively, a weighted model for ranking relaxed queries, and algorithms for adaptive relaxation of a query and top-k query processing. We discuss results from a comprehensive set of experiments that show the effectiveness and the efficiency of our approach.  相似文献   

6.
A top-k query returns k tuples with the highest (or the lowest) scores from a relation. The score is computed by combining the values of one or more attributes. We focus on top-k queries having monotone linear score functions. Layer-based methods are well-known techniques for top-k query processing. These methods construct a database as a single list of layers. Here, the ith layer has the tuples that can be the top-i tuple. Thus, these methods answer top-k queries by reading at most k layers. Query performance, however, is poor when the number of tuples in each layer (simply, the layer size) is large. In this paper, we propose a new layer-ordering method, called the Partitioned-Layer Index (simply, the PL Index), that significantly improves query performance by reducing the layer size. The PL Index uses the notion of partitioning, which constructs a database as multiple sublayer lists instead of a single layer list subsequently reducing the layer size. The PL Index also uses the convex skyline, which is a subset of the skyline, to construct a sublayer to further reduce the layer size. The PL Index has the following desired properties. The query performance of the PL Index is quite insensitive to the weights of attributes (called the preference vector) of the score function and is approximately linear in the value of k. The PL Index is capable of tuning query performance for the most frequently used value of k by controlling the number of sublayer lists. Experimental results using synthetic and real data sets show that the query performance of the PL Index significantly outperforms existing methods except for small values of k (say, k?9).  相似文献   

7.
Top-k query in a wireless sensor network is to find the k sensor nodes with the highest sensing values. To evaluate the top-k query in such an energy-constrained network poses great challenges, due to the unique characteristics imposed on its sensors. Existing solutions for top-k query in the literature mainly focused on energy efficiency but little attention has been paid to the query response time and its effect on the network lifetime. In this paper we address the query response time and its effect on the network lifetime through the study of the top-k query problem in sensor networks with the response time constraint. We aim at finding an energy-efficient routing tree and evaluating top-k queries on the tree such that the network lifetime is significantly prolonged, provided that the query response time constraint is met too. To do so, we first present a cost model of energy consumption for answering top-k queries and introduce the query response time definition. We then propose a novel joint query optimization framework, which consists of finding a routing tree in the network and devising a filter-based evaluation algorithm for top-k query evaluation on the tree. We finally conduct extensive experiments by simulation to evaluate the performance of the proposed algorithms, in terms of the total energy consumption, the maximum energy consumption among nodes, the query response time, and the network lifetime. The experimental results showed that there is a non-trivial tradeoff between the query response time and the network lifetime, and the joint query optimization framework can prolong the network lifetime significantly under a specified query response time constraint.  相似文献   

8.
Top-k queries on large multi-attribute data sets are fundamental operations in information retrieval and ranking applications. In this article, we initiate research on the anytime behavior of top-k algorithms on exact and fuzzy data. In particular, given specific top-k algorithms (TA and TA-Sorted) we are interested in studying their progress toward identification of the correct result at any point during the algorithms’ execution. We adopt a probabilistic approach where we seek to report at any point of operation of the algorithm the confidence that the top-k result has been identified. Such a functionality can be a valuable asset when one is interested in reducing the runtime cost of top-k computations. We present a thorough experimental evaluation to validate our techniques using both synthetic and real data sets.  相似文献   

9.
Sensor fusion is the combining of sensory data from disparate sources such that the resulting information is in some sense better than would be possible when these sources were used individually. The natural uncertainty exists in these data because sensors are not precise enough. Hence, the intuitive method to store this kind of data is using uncertain database. Finding the top-k entities according to one or more attributes is a powerful technique when the uncertain database contains large quantity of data. However, compared to top-k in traditional databases, queries over uncertain database are more complicated because of the existence of exponential possible worlds. We propose a method to process entity–based global top-k aggregate queries in uncertain database, which returns the top-k entities that have the highest aggregate value. Our method has two levels, entity state generation and G-topk-E query processing. In the former level, entity states, which satisfy the properties of x-tuple, are generated one after the other according to their aggregate values, while in the latter level, dynamic programming–based global top-k entity query processing is employed to return the answers. Comprehensive experiments on different data sets demonstrate the effectiveness of the proposed solutions.  相似文献   

10.
We study here fundamental issues involved in top-k query evaluation in probabilistic databases. We consider simple probabilistic databases in which probabilities are associated with individual tuples, and general probabilistic databases in which, additionally, exclusivity relationships between tuples can be represented. In contrast to other recent research in this area, we do not limit ourselves to injective scoring functions. We formulate three intuitive postulates for the semantics of top-k queries in probabilistic databases, and introduce a new semantics, Global-Topk, that satisfies those postulates to a large degree. We also show how to evaluate queries under the Global-Topk semantics. For simple databases we design dynamic-programming based algorithms. For general databases we show polynomial-time reductions to the simple cases, and provide effective heuristics to speed up the computation in practice. For example, we demonstrate that for a fixed k the time complexity of top-k query evaluation is as low as linear, under the assumption that probabilistic databases are simple and scoring functions are injective. Research partially supported by NSF grant IIS-0307434. An earlier version of some of the results in this paper was presented in [1].  相似文献   

11.
Consider a database consisting of a set of tuples, each of which contains an interval, a type and a weight. These tuples are called typed intervals and used to support applications involving diverse intervals. In this paper, we study top-k queries on typed intervals. The query reports k intervals intersecting the query time, containing a particular type and having the largest weight. The query time can be a point or an interval. Further, we define top-k continuous queries that return qualified intervals at each time point during the query interval. To efficiently answer such queries, a key challenge is to build an index structure to manage typed intervals. Employing the standard interval tree, we build the structure in a compact way to reduce the I/O cost, and provide analytically derived partitioning methods to manage the data. Query algorithms are proposed to support point, interval and continuous queries. An auxiliary main-memory structure is developed to report continuous results. Using large real and synthetic datasets, extensive experiments are performed in a prototype database system to demonstrate the effectiveness, efficiency and scalability. The results show that our method significantly outperforms alternative methods in most settings.  相似文献   

12.
Keyword Search Over Relational Databases (KSORD) enables casual or Web users easily access databases through free-form keyword queries. Improving the performance of KSORD systems is a critical issue in this area. In this paper, a new approach CLASCN (Classification, Learning And Selection of Candidate Network) is developed to efficiently perform top-κ keyword queries in schema-graph-based online KSORD systems. In this approach, the Candidate Networks (CNs) from trained keyword queries or executed user queries are classified and stored in the databases, and top-κ results from the CNs are learned for constructing CN Language Models (CNLMs). The CNLMs are used to compute the similarity scores between a new user query and the CNs from the query. The CNs with relatively large similarity score, which are the most promising ones to produce top-κ results, will be selected and performed. Currently, CLASCN is only applicable for past queries and New All-keyword-Used (NAU) queries which are frequently submitted queries. Extensive experiments also show the efficiency and effectiveness of our CLASCN approach.  相似文献   

13.
Recently, due to the imprecise nature of the data generated from a variety of streaming applications, such as sensor networks, query processing on uncertain data streams has become an important problem. However, all the existing works on uncertain data streams study unbounded streams. In this paper, we take the first step towards the important and challenging problem of answering sliding-window queries on uncertain data streams, with a focus on one of the most important types of queries—top-k queries. It is nontrivial to find an efficient solution for answering sliding-window top-k queries on uncertain data streams, because challenges not only stem from the strict space and time requirements of processing both arriving and expiring tuples in high-speed streams, but also rise from the exponential blowup in the number of possible worlds induced by the uncertain data model. In this paper, we design a unified framework for processing sliding-window top-k queries on uncertain streams. We show that all the existing top-k definitions in the literature can be plugged into our framework, resulting in several succinct synopses that use space much smaller than the window size, while they are also highly efficient in terms of processing time. We also extend our framework to answering multiple top-k queries. In addition to the theoretical space and time bounds that we prove for these synopses, we present a thorough experimental report to verify their practical efficiency on both synthetic and real data.  相似文献   

14.
Multi-dimensional top-k dominating queries   总被引:1,自引:0,他引:1  
The top-k dominating query returns k data objects which dominate the highest number of objects in a dataset. This query is an important tool for decision support since it provides data analysts an intuitive way for finding significant objects. In addition, it combines the advantages of top-k and skyline queries without sharing their disadvantages: (i) the output size can be controlled, (ii) no ranking functions need to be specified by users, and (iii) the result is independent of the scales at different dimensions. Despite their importance, top-k dominating queries have not received adequate attention from the research community. This paper is an extensive study on the evaluation of top-k dominating queries. First, we propose a set of algorithms that apply on indexed multi-dimensional data. Second, we investigate query evaluation on data that are not indexed. Finally, we study a relaxed variant of the query which considers dominance in dimensional subspaces. Experiments using synthetic and real datasets demonstrate that our algorithms significantly outperform a previous skyline-based approach. We also illustrate the applicability of this multi-dimensional analysis query by studying the meaningfulness of its results on real data.  相似文献   

15.
In this paper, we define a new class of queries, the top-k multiple-type integrated query (simply, top-k MULTI query). It deals with multiple data types and finds the information in the order of relevance between the query and the object. Various data types such as spatial, textual, and relational data types can be used for the top-k MULTI query. The top-k MULTI query distinguishes itself from the traditional top-k query in that the component scores to calculate final scores are determined dependent of the query. Hence, each component score is calculated only when the query is given for each data type rather than being calculated apriori as in the top-k query. As a representative instance, the traditional top-k spatial keyword query is an instance of the top-k MULTI query. It deals with the spatial data type and text data type and finds the information based on spatial proximity and textual relevance between the query and the object, which is determined only when the query is given. In this paper, we first define the top-k MULTI query formally and define a new specific instance for the top-k MULTI query, the top-k spatial-keyword-relational(SKR) query, by integrating the relational data type into the traditional top-k spatial keyword query. Then, we investigate the processing approaches for the top-k MULTI query. We discuss the scalability of those approaches as new data types are integrated. We also devise the processing methods for the top-k SKR query. Finally, through extensive experiments on the top-k SKR query using real and synthetic data sets, we compare efficiency of the methods in terms of the query performance and storage.  相似文献   

16.
《Decision Support Systems》2007,44(1):326-349
An increasing number of application areas now rely on obtaining the “best matches” to a given query as opposed to exact matches sought by traditional transactions. This type of exploratory querying (also called top-k querying) can significantly improve the performance of web-based applications such as consumer reviews, price comparisons and recommendations for products/services. Due to the lack of support for specialized indexes and/or data structures in relational database management systems (RDBMSs), recent research has focused on utilizing summary statistics (histograms) maintained by RDBMSs for translating the top-k request into a traditional range query. Because the RDBMS query engines are already optimized for execution of range queries, such approach has both practical as well as efficiency advantages. In this paper, we review the strengths and weaknesses of common histogram construction techniques with regard to their structural characteristics, accuracy in approximating the true distribution of the underlying data, and implications for top-k retrieval. We also present our top-k retrieval strategy (Query-Level Optimal Cost Strategy — QLOCS) and demonstrate its “histogram-independent” performance. Based on comparative experimental and statistical analyses with the best-known histogram-based strategy in the literature, we show that QLOCS is not only more efficient but also provides more consistent performance across commonly used histogram types in RDBMSs.  相似文献   

17.
The top-k query on uncertain data set has been a very hot topic these years, and there have been many studies on uncertain top-k queries. Unfortunately, most of the existing algorithms only consider centralized processing environments, and they are not suitable for the large-scale data. In this paper, it is the first attempt to process probabilistic threshold top-k queries (an important uncertain top-k query, PT-k for short) in a distributed environment. We propose 3 efficient algorithms. The serial distributed approach adopts a new method, which only requires a few amount of calculations, to serially process PT-k queries in distributed environments. The global sorting first algorithm for PT-k query processing (GSP) is designed for improving the computation speed. In GSP, a distributed sorting operation is performed, and then we compute the candidates for PT-k queries in parallel. The query results can be computed by using a novel incremental method which can reduce the number of calculations. The local filtering first algorithm for PT-k query processing is designed for reducing the network overhead. Specifically, several filtering strategies are proposed to filter out redundant data locally, and then the incremental method in GSP is used to process the PT-k queries. Finally, the effectiveness of our proposed algorithms is verified through a series of experiments.  相似文献   

18.
In this paper, we introduce item-centric mining, a new semantics for mining long-tailed datasets. Our algorithm, TopPI, finds for each item its top-k most frequent closed itemsets. While most mining algorithms focus on the globally most frequent itemsets, TopPI guarantees that each item is represented in the results, regardless of its frequency in the database.TopPI allows users to efficiently explore Web data, answering questions such as “what are the k most common sets of songs downloaded together with the ones of my favorite artist?”. When processing retail data consisting of 55 million supermarket receipts, TopPI finds the itemset “milk, puff pastry” that appears 10,315 times, but also “frangipane, puff pastry” and “nori seaweed, wasabi, sushi rice” that occur only 1120 and 163 times, respectively. Our experiments with analysts from the marketing department of our retail partner demonstrate that item-centric mining discover valuable itemsets. We also show that TopPI can serve as a building-block to approximate complex itemset ranking measures such as the p-value.Thanks to efficient enumeration and pruning strategies, TopPI avoids the search space explosion induced by mining low support itemsets. We show how TopPI can be parallelized on multi-cores and distributed on Hadoop clusters. Our experiments on datasets with different characteristics show the superiority of TopPI when compared to standard top-k solutions, and to Parallel FP-Growth, its closest competitor.  相似文献   

19.
A top-k spatial keyword query returns k objects having the highest (or lowest) scores with regard to spatial proximity as well as text relevancy. Approaches for answering top-k spatial keyword queries can be classified into two categories: the separate index approach and the hybrid index approach. The separate index approach maintains the spatial index and the text index independently and can accommodate new data types. However, it is difficult to support top-k pruning and merging efficiently at the same time since it requires two different orders for clustering the objects: the first based on scores for top-k pruning and the second based on object IDs for efficient merging. In this paper, we propose a new separate index method called Rank-Aware Separate Index Method (RASIM) for top-k spatial keyword queries. RASIM supports both top-k pruning and efficient merging at the same time by clustering each separate index in two different orders through the partitioning technique. Specifically, RASIM partitions the set of objects in each index into rank-aware (RA) groups that contain the objects with similar scores and applies the first order to these groups according to their scores and the second order to the objects within each group according to their object IDs. Based on the RA groups, we propose two query processing algorithms: (i) External Threshold Algorithm (External TA) that supports top-k pruning in the unit of RA groups and (ii) Generalized External TA that enhances the performance of External TA by exploiting special properties of the RA groups. RASIM is the first research work that supports top-k pruning based on the separate index approach. Naturally, it keeps the advantages of the separate index approach. In addition, in terms of storage and query processing time, RASIM is more efficient than the IR-tree method, which is the prevailing method to support top-k pruning to date and is based on the hybrid index approach. Experimental results show that, compared with the IR-tree method, the index size of RASIM is reduced by up to 1.85 times, and the query performance is improved by up to 3.22 times.  相似文献   

20.
Ranking queries, also known as top-k queries, produce results that are ordered on some computed score. Typically, these queries involve joins, where users are usually interested only in the top-k join results. Top-k queries are dominant in many emerging applications, e.g., multimedia retrieval by content, Web databases, data mining, middlewares, and most information retrieval applications. Current relational query processors do not handle ranking queries efficiently, especially when joins are involved. In this paper, we address supporting top-k join queries in relational query processors. We introduce a new rank-join algorithm that makes use of the individual orders of its inputs to produce join results ordered on a user-specified scoring function. The idea is to rank the join results progressively during the join operation. We introduce two physical query operators based on variants of ripple join that implement the rank-join algorithm. The operators are nonblocking and can be integrated into pipelined execution plans. We also propose an efficient heuristic designed to optimize a top-k join query by choosing the best join order. We address several practical issues and optimization heuristics to integrate the new join operators in practical query processors. We implement the new operators inside a prototype database engine based on PREDATOR. The experimental evaluation of our approach compares recent algorithms for joining ranked inputs and shows superior performance.Received: 23 December 2003, Accepted: 31 March 2004, Published online: 12 August 2004Edited by: S. AbiteboulExtended version of the paper published in the Proceedings of the 29th International Conference on Very Large Databases, VLDB 2003, Berlin, Germany, pp 754-765  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号