首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar burning velocity, flame structure and flame stability under the condition of lean burning were investigated. The results show that the laminar burning velocity increases with ethylene fraction, especially at a large equivalence ratio. More ethylene addition gives rise to higher concentrations of H, O and OH radicals in the flame, which significantly promotes chemical reactions, and a linear correlation exists between the laminar burning velocity and the maximum H + OH concentration in the reaction zone. With the increase of ethylene fraction, the adiabatic flame temperature is raised, while the inner layer temperature becomes lower, contributing to the enhancement of combustion. Markstein length and Markstein number, representative of the flame stability, increase as more ethylene is added, indicating the tendency of flame stability to improve with ethylene addition.  相似文献   

2.
This paper presents burning rates as a function of pressure of several propellant formulations based on ammonium perchlorate (AP) and hydroxyl-terminated polybutadiene cured by isophorone diisocyanate, many of which exhibit significantly low (nearly zero or negative) values of the pressure exponent of the burning rate in distinct pressure ranges, termed as plateau burning rate trends. The propellants contain a bimodal distribution of AP particles with the size of the coarse and fine particles within narrow ranges whose mean values are widely separated. Two mean sizes of fine particles were considered for the propellant formulations in the present work, namely, 5 and 20 μm. These choices are based on the mid-pressure extinction behavior exhibited by the matrix of fine AP and binder contained in the propellants but when tested alone over a wide range of fine AP size and pressure. The propellants that include the fine AP/binder matrixes exhibiting a mid-pressure extinction, in turn, exhibit the plateau burning rate trends within the corresponding pressure ranges. A plateau is also observed at elevated pressures in the burning rates of some formulations, which is related to the diminishing relative importance of the near-surface leading-edge region of the oxidizer/fuel diffusion flame in the gas-phase combustion zone. The choice of the coarse AP size influences the exact pressure range within the mid-pressure extinction domain of the matrix where the propellant exhibits the plateau burning rate trends. __________ Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 4, pp. 73–81, July–August, 2007.  相似文献   

3.
The effect of wall roughness on particle behavior in two-phase flows in a horizontal backward-facing step is studied using a phase-Doppler particle anemometer. The results show that the wall roughness widens the particle velocity probability density distribution, enhances the redistribution of particle velocity into different directions,reduces the particle longitudinal mean velocity and increases the longitudinal and transverse fluctuation velocities and Reynolds shear stress. The effect of roughness on particle motion in the recirculation zone is weaker than that in the fully developed flow region. The effect of roughness for small particles is restricted only in the near-wall region, while that for large particle diffuses to the whole flow field.  相似文献   

4.
A computational study of soot formation in ethylene/air coflow jet diffusion flame at atmospheric pressure was conducted using a reduced mechanism and soot formation model. A 20-step mechanism was derived from the full mechanism using sensitivity analysis, reaction path analysis and quasi steady state (QSS) approximation. The model in premixed flame was validated and with computing savings in diffusion flame was applied by incorporating into a CFD code. Simulations were performed to explore the effect of coflow air on flame structure and soot formation. Thermal radiation was calculated by a discrete-ordinates method, and soot formation was predicted by a simple two-equation soot model. Model results are in good agreement with those from experiment data and detailed mechanism at atmospheric conditions. The soot nucleation, growth, and oxidation by OH are all enhanced by decrease in coflow air velocity. The peak soot volume fraction region appears in the lower annular region between the peak flame temperature and peak acetylene concentration locations, and the high soot oxidation rate due to the OH attack occurs in the middle annular region because of high temperature.  相似文献   

5.
The coking observation and particle flow behaviour in both thermal plasma and cold plexiglas downers were investigated in a binary particle system formed by injecting coarse inert particles (carrying coke away and scouring wall) and fine coal powders into the downer reactor. The results demonstrate that this scheme is a rational selection to prevent coking on downer walls and improve particle velocity distribution along the radial direction. When injected coarse particles mixed with fine powders in downers, the fluctuation of local particle velocity in the radial direction becomes smaller and two peaks in the radial distribution of local particle velocity occur due to the improved dispersing character and flow structure, which are beneficial to the thermo-plasma coal cracking reaction and coking prevention.  相似文献   

6.
The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The simulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, mad a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall;the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design.  相似文献   

7.
A study was performed of the formation of metal oxide nanoparticles during combustion of aluminum and titanium drops which moved in air at a velocity of up to 3 m/sec. The source of the burning particles was a pyrotechnic mixture which contained an oxidizer, a binder, and metal particles of size 4–350 μm. Transmission electron microscopic studies showed that the combustion products were 1–10 μm aggregates of fractal structure consisting of primary particles (spherules) of Al2O3/TiO2 5–150 nm in diameter. The Brownian diffusion of the aggregates and their motion in electric and gravitational fields were observed using videomicroscopic recording. The charge distribution of TiO2 aggregates and the equivalent radius of Brownian mobility were determined. In Al combustion, the zone of nanoparticle formation is separated from the particle surface by a distance approximately equal to the particle radius, and in Ti combustion, this zone is located directly near the surface. Coagulation of the oxide aerosol in the track of a burning particle leads to aerogelation with the formation of huge aggregates. Analytical expressions for approximate calculation of the parameters of the oxide particles and zones of their formation are proposed. __________ Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 6, pp. 33–47, November–December, 2006.  相似文献   

8.
Recent studies on hydrogen combustion were reviewed briefly. The laminar flow and combustion of premixed hydrogen/air mixture in a cylindrical channel of a monolith reactor with and without catalytic wall was numerically modeled by solving two-dimensional (2-D) Navier Stokes (N S) equations, energy equation, and species equations. Eight gas species and twenty reversible gas reactions were considered. The control volume technique and the SIMPLE algorithm were used to solve the partial differential equations. The streamlines of the flow field, temperature contours, the entrance length, and the concentration fields were computed. It is found that the entrance zone plays an important role on flow and temperature as well as species distribution. Therefore, the flow cannot be assumed either as fully developed or as plug flow. There is a small but strong thermal expansion zone between the wall and the entrance. Both diffusion and convection affect the heat and mass transfer processes in the expansion zone. Thus the equations of momentum, energy and species conservations should be used to describe hydrogen/air combustion in the monolith reactor. The hot-spot location and concentration field of the homogeneous combustion is strongly influenced by the inlet velocity and temperature, and the equivalence ratio. The catalytic combustion of premixed hydrogen/air mixture over platinum catalyst-coated wall in a cylindrical channel was also simulated.  相似文献   

9.
旋风分离器内旋进涡核的PIV显示   总被引:1,自引:0,他引:1  
The precessing vortex core (PVC) in a cyclone separator plays an important role in the separation performance and in further understanding of the general law of periodic unsteady flow therein. In this paper, the unsteady flow field is investigated with particle image velocimetry (PIV), and the instantaneous velocity, vorticity,tangential velocity, and radial velocity are acquired by analyzing the images of instantaneous flow. It is for the first time reported that there is a centrifugal flow region close to the dust discharge zone and its maximum value is higher than the mean radial velocity. This discovery is very important for understanding the principle of separation of particles in the area of dust discharge. Determination of the frequency and amplitude of PVC was conducted in the region where the phenomenon of PVC is remarkable. Results agree well with those obtained by hot wire anemometry. The observations of the center of “cortex core and the bimodal distribution of the amplitude of the PVC indicate the vortex core precesses around the geometric axis of the cvclone in its own way.  相似文献   

10.
A reliable kinetic model to describe the effects of various factors on the reaction rate and selectivity of pinene isomerization is developed. Furthermore, computational fluid dynamics(CFD) is applied to simulate the solid–liquid dispersion in reactor. The catalyst Ti M is obtained by improving the composition and structure of hydrated titanium dioxide. The kinetic equation of pinene isomerization is deduced based on reaction mechanism and catalyst deactivation model. The kinetic equation of pinene isomerization reaction is fitted, and the results show that the fitted equation is correlated with the experimental data. The rate and selectivity of pinene isomerization reaction are affected by the amount of catalyst, deactivation of catalyst, structure of catalyst, reaction temperature and water content of catalyst. The solid–liquid distribution of the reactor is calculated by computational fluid dynamics numerical simulation, and the solid–liquid dispersion in commercial scale reactor is more uniform than that in lab-scale reactor.  相似文献   

11.
The burning rate of the energetic materials composed of glycidyl azide polymer (GAP) and HMX particles was characterized in order to elucidate the heat release process during burning. Since GAP is an energetic polymer and burns by itself, the addition of HMX increases the flame temperature and alters the burning rate characteristics. Experimental observations indicate that the gas phase structure consists of a two‐staged gas phase reaction: the burning rate is controlled by the first‐stage reaction zone and the final flame is formed at the second‐stage reaction zone. The heat flux transferred back from the first‐stage reaction zone to the burning surface increases as pressure increases and the heat released at the burning surface remains unchanged when pressure is increased.  相似文献   

12.
Most solid rockets are powered by ammonium perchlorate (AP) composite propellant including aluminum particles. As aluminized composite propellant burns, aluminum particles agglomerate as large as above 100 μm diameter on the burning surface, which in turn affects propellant combustion characteristics. The development of composite propellants has a long history. Many studies of aluminum particle combustion have been conducted. Optical observations indicate that aluminum particles form agglomerates on the burning surface of aluminized composite propellant. They ignite on leaving the burning surface. Because the temperature gradient in the reaction zone near a burning surface influences the burning rate of a composite propellant, details of aluminum particle agglomeration, agglomerate ignition, and their effects on the temperature gradient must be investigated. In our previous studies, we measured the aluminum particle agglomerate diameter by optical observation and collecting particles. We observed particles on the burning surface, the reaction zone, and the luminous flame zone of an ammonium perchlorate (AP)/ammonium nitrate (AN) composite propellant. We confirmed that agglomeration occurred in the reaction zone and that the agglomerate diameter decreased with increasing the burning rate. In this study, observing aluminum particles in the reaction zone near the burning surface, we investigated the relation between the agglomerates and the burning rate. A decreased burning rate and increased added amount of aluminum particles caused a larger agglomerate diameter. Defining the extent of the distributed aluminum particles before they agglomerate as an agglomerate range, we found that the agglomerate range was constant irrespective of the added amount of aluminum particles. Furthermore, the agglomerate diameter was ascertained from the density of the added amount of aluminum particles in the agglomerate range. We concluded from the heat balance around the burning surface that the product of the agglomerate range and the burning rate was nearly constant irrespective of the added amount of aluminum particles. Moreover, the reduced burning rate increased the agglomerate range.  相似文献   

13.
A simple conductive model of the laminar flame in fine-particle dusts, with particles burning in the diffusion mode, is presented. The model is based on the assumption about wide zones of combustion in dusts; therefore, the main contribution to the formation of the heat flux toward the pre-flame zone is made by the heat released on burning particles near the interface between the burning and pre-flame zones. The normal flame velocity is demonstrated to increase with decreasing particle size and with increasing fuel and oxidizer concentrations. The maximum velocities are reached under the condition of identical volume heat capacities of the solid and gas phases, which requires the fuel concentration to be several times higher than the stoichiometric value. The calculated results are validated by experimental data on the normal flame velocity as a function of the fuel concentration for gas suspensions of magnesium, aluminum, zirconium, iron, and boron particles.  相似文献   

14.
The combustion wave structure and thermal decomposition process of HMX were examined in order to elucidate the burning rate characteristics of HMX. The combustion wave can be divided into three zones: nonreactive solid-phase, surface reaction, and gas-phase reaction zones. Measurements with micro-thermocouples revealed that the heat flux produced in the surface reaction zone is approximately equal to the heat flux transferred back from the gas phase to the burning surface. Accordingly, the reaction process in the suface reaction and the gas phase zones plays a dominant role in the burning rate of HMX. The gas phase reaction zone consists of a two-stage reaction process: the first stage is the exothermic rapid reaction process between NO2 and aldchydes, and the second stage is the exothermic slow reaction process between NO and N2O and remaining fuel species. The luminous flame zone which is determined to be the second stage reaction process approaches rapidly the burning surface as pressure increases. However, the luminous flame reaction appears to be little responsible for the burning rate of HMX. Examinations of the quenched burning surface of HMX samples revealed that the burning surface melts and forms a noncrystallized intermediate material. The surface structure appears to be different from the structure of thermally degraded HMX samples which were obtained by a thermogravnmetric analysis.  相似文献   

15.
Ali Haghiri  Mehdi Bidabadi 《Fuel》2011,90(7):2413-2421
In this investigation, a theoretical study is performed to analyze the dynamic behavior of particles across flame propagation through a two-phase mixture consisting of micro-iron particles and air. In the first step for calculation of the particle velocity profile, the Lagrangian approach of particle motion is employed, and then thermophoretic, gravitational and buoyancy forces are taken into consideration. In order to simulate the temperature profile for the thermophoretic force, it is assumed that the flame structure consists of three zones: preheat, reaction, and post flame (burned). It should be noted that the radiative heat-transfer equation is employed to describe the thermal radiation exchanged between the burned zone and the preheat zone. In the resumption, a control volume above the leading edge of the combustion zone is considered and the change in the particle number density in this volume is obtained via the balance of particle mass fluxes passing through it. The results show that the induced thermal radiation plays a significant role in increasing the mixture temperature all over the preheat zone, and that the particle velocity profile and the concentration distribution of particles as a function of distance from the leading edge of the combustion zone also have considerable consistency with published experimental data.  相似文献   

16.
The combustion mechanism of ammonium perchlorate (AP) composite propellants were studied. The oxidizer-rich propellants tested were made with excess concentrations of AP particles. The pressure deflagration limit of propellant decreases with increasing the concentration of binder. The combustion wave consists of two reaction regions I and II: the region I is the zone of AP monopropellant flame and the region II is the zone of diffusion flame. The heat flux feedback from the gas phase to the burning surface increases as pressure increases, and the heat flux is responsible for the burning rate characteristics.  相似文献   

17.
In this paper, particle size effect on pinewood combustion in a stationary packed bed was investigated. Mass loss rate, temperature profile at different bed locations and gas compositions in the out-of-bed flue gases were measured at a fixed primary air flow rate. Pinewood cubes was fired with size ranging from 5 to 35 mm. A unique numerical model applicable to thermally thick particles was proposed and relevant equations were solved to simulate the non-homogeneous characteristics of the burning process. It is found that at the operating conditions of the current study, smaller particles are quicker to ignite than larger particles and have distinctive combustion stages; burning rate is also higher with smaller fuel size; and smaller fuels have a thinner reaction zone and result in both higher CO and CH4 concentrations in the out-of-bed flue gases; on the other hand, larger particles produced a higher flame temperature and result in higher H2 concentration in the flue gases. Larger particles also cause the combustion process becoming more transient where the burning rate varies for most part of the combustion process.  相似文献   

18.
A series of combustion experiments of polymethyl methacrylate (PMMA) plates with two shapes, three thicknesses, and different sizes was performed to investigate the effects of equivalent diameter on combustion characteristics of vertical PMMA in a natural convection environment. Two digital video cameras were used to record the burning process. The temporal variation of mass was recorded by an electronic balance. The influence of equivalent diameter on mass loss rate and flame height was then analyzed theoretically. Convection and radiation heat transfer were calculated and modeled in the theoretical analysis and compared to experiment. The result shows that the theoretical prediction of mass loss rate for each equivalent diameter is in good agreement with the experimental measurements. In addition, the relationship between flame height and heat release rate was analyzed using dimensionless analysis method. It was found that the flame height for vertical PMMA burning in a nature convection environment is dominated by heat release rate and equivalent diameter.  相似文献   

19.
A one-dimensional stationary model of biomass gasification in a fixed bed downdraft gasifier is presented in this paper. The model is based on the mass and energy conservation equations and includes the energy exchange between solid and gaseous phases, and the heat transfer by radiation from the solid particles. Different gasification sub-processes are incorporated: biomass drying, pyrolysis, oxidation of char and volatile matter, chemical reduction of H2, CO2 and H2O by char, and hydrocarbon reforming. The model was validated experimentally in a small-scale gasifier by comparing the experimental temperature fields, biomass burning rates and fuel/air equivalence ratios with predicted results. A good agreement between experimental and estimated results was achieved. The model can be used as a tool to study the influence of process parameters, such as biomass particle mean diameter, air flow velocity, gasifier geometry, composition and inlet temperature of the gasifying agent and biomass type, on the process propagation velocity (flame front velocity) and its efficiency. The maximum efficiency was obtained with the smaller particle size and lower air velocity. It was a consequence of the higher fuel/air ratio in the gasifier and so the production of a gas with a higher calorific value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号