首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
β-Si3N4 whisker-reinforced β'SiAlON composites were fabricated by extrusion and densified, using pressureless sintering. Whisker alignment was observed in both the green and sintered microstructures. SEM analysis of polished, sintered samples showed a microstructure consisting of the original β-Si3N4 whiskers in a matrix of fine SiAlON grains. SEM of plasma-etched samples and TEM analysis showed that the whiskers, as a result of grain growth, consisted of two phases, a core and a sheath layer. X-ray mapping and EDS analysis revealed that the core material contained no trace of Al, confirming the presence of original β-Si3N4 whiskers. The composition of the sheath was qualitatively identical to that of the fine β' SiAlON grains in the matrix. The sheath was thus formed by the precipitation of the β'SiAlON during liquid-phase sintering and led to substantial growth of the whiskers. Microdiffraction showed that the β'SiAlON grew epitaxially on the β-Si3N4 whiskers, resulting in a heavily faulted SiAlON layer.  相似文献   

2.
Fine β-Si3N4 powders with or without the addition of 5 wt% of large β-Si3N4 particles (seeds) were gas-pressure sintered at 1900°C for 4 h using Y2O3 and Al2O3 as sintering aids. The microstructures were examined on polished and plasmaetched surfaces. These materials had a microstructure of in situ composites with similar small matrix grains and different elongated grains. The elongated grains in the materials with seeds had a larger diameter and a smaller aspect ratio than those in the materials without seeds. A core/rim structure was observed in the elongated grains; the core was pure β-Si3N4 and the rim was β-SiAION. These results show that the large β-Si3N4 particles acted as seeds for abnormal grain growth and the rim was formed by precipitation from the liquid containing aluminum.  相似文献   

3.
This paper deals with the densification and phase transformation during pressureless sintering of Si3N4 with LiYO2 as the sintering additive. The dilatometric shrinkage data show that the first Li2O- rich liquid forms as low as 1250°C, resulting in a significant reduction of sintering temperature. On sintering at 1500°C the bulk density increases to more than 90% of the theoretical density with only minor phase transformation from α-Si3N4 to β-Si3N4 taking place. At 1600°C the secondary phase has been completely converted into a glassy phase and total conversion of α-Si3N4 to β-Si3N4 takes place. The grain growth is anisotropic, leading to a microstructure which has potential for enhanced fracture toughness. Li2O evaporates during sintering. Thus, the liquid phase is transient and the final material might have promising mechanical properties as well as promising high-temperature properties despite the low sintering temperature. The results show that the Li2O−Y2O3 system can provide very effective low-temperature sintering additives for silicon nitride.  相似文献   

4.
When a small amount of β-Si3N4 seed particles is added during the preparation of Si3N4 ceramics, a bimodal microstructure is obtained by sintering at 1760°C. When the specimen is further heat-treated at 1900°C to enhance the bimodal characteristic, the growth of large β grains is limited. The addition of a controlled amount of β seeds of uniform and large size is suggested to obtain the intended bimodal microstructure of Si3N4 ceramics.  相似文献   

5.
This paper reports the texturing behavior of β-sialon by strong magnetic field alignment (SMFA) during slip casting, followed by reaction pressureless sintering, using either α or β-Si3N4, Al2O3, and AlN as the starting materials. It is found that the β-Si3N4 crystal exhibits a substantially stronger orientation ability than the α-Si3N4 crystal regardless of the Si3N4 raw powders in the magnetic field of 12 T. The β-raw powder produces a highly a , b -axis-oriented β-Si3N4 green body with a Lotgering orientation factor of up to 0.97. During sintering, the β-raw powder allows the a , b -axis-oriented β-sialon to retain the Lotgering orientation factor similar to and even higher than that of β-Si3N4 in the green body. In contrast, the α-raw powder leads to a faster transformation rate of α/β-Si3N4 to β-sialon but a substantially lower texture in β-sialon. The results indicate that the use of the β-raw powder is more efficient for producing highly textured β-sialon via SMFA than that of the α-raw powder as well as the prolonged sintering.  相似文献   

6.
By using α-Si3N4 and β-Si3N4 starting powders with similar particle size and distribution, the effect of α-β (β') phase transition on densification and microstructure is investigated during the liquid-phase sintering of 82Si3N4·9Al2O3·9Y2O3 (wt%) and 80Si3N4·13Al2O3·5AIN·5AIN·2Y2O3. When α-Si3N4 powder is used, the grains become elongated, apparently hindering the densification process. Hence, the phase transition does not enhance the densification.  相似文献   

7.
Porous silicon nitride (Si3N4) ceramics with about 50% porosity were fabricated by pressureless sintering of α-Si3N4 powder with 5 wt% sintering additive. Four types of sintering aids were chosen to study their effect on the microstructure and mechanical properties of porous Si3N4 ceramics. XRD analysis proved the complete formation of a single β-Si3N4 phase. Microstructural evolution and mechanical properties were dependent mostly on the type of sintering additive. SEM analysis revealed the resultant porous Si3N4 ceramics as having high aspect ratio, a rod-like microstructure, and a uniform pore structure. The sintered sample with Lu2O3 sintering additive, having a porosity of about 50%, showed a high flexural strength of 188 MPa, a high fracture toughness of 3.1 MPa·m1/2, due to fine β-Si3N4 grains, and some large elongated grains.  相似文献   

8.
Silicon nitride ceramics were prepared by spark plasma sintering (SPS) at temperatures of 1450°–1600°C for 3–12 min, using α-Si3N4 powders as raw materials and MgSiN2 as sintering additives. Almost full density of the sample was achieved after sintering at 1450°C for 6 min, while there was about 80 wt%α-Si3N4 phase left in the sintered material. α-Si3N4 was completely transformed to β-Si3N4 after sintering at 1500°C for 12 min. The thermal conductivity of sintered materials increased with increasing sintering temperature or holding time. Thermal conductivity of 100 W·(m·K)−1 was achieved after sintering at 1600°C for 12 min. The results imply that SPS is an effective and fast method to fabricate β-Si3N4 ceramics with high thermal conductivity when appropriate additives are used.  相似文献   

9.
β-Si3N4 powder containing 1 mol% of equimolar Y2O3–Nd2O3 was gas-pressure sintered at 2000°C for 2 h (SN2), 4 h (SN4), and 8 h (SN8) in 30-MPa nitrogen gas. These materials had a microstructure of " in-situ composites" as a result of exaggerated grain growth of some β Si3N4 grains during firing. Growth of elongated grains was controlled by the sintering time, so that the desired microstructures were obtained. SN2 had a Weibull modulus as high as 53 because of the uniform size and spatial distribution of its large grains. SN4 had a fracture toughness of 10.3 MPa-m1/2 because of toughening provided by the bridging of elongated grains, whereas SN8 showed a lower fracture toughness, possibly caused by extensive microcracking resulting from excessively large grains. Gas-pressure sintering of β-Si3N4 powder was shown to be effective in fostering selective grain growth for obtaining the desired composite microstructure.  相似文献   

10.
First-principles molecular orbital calculations are performed by the discrete variational Xalpha method using model clusters of rare-earth-doped β-Si3N4 and the interface between prismatic planes of β-Si3N4 and intergranular glassy films. On the basis of the total overlap population of each cluster, the rare-earth ions are implied to be stable in the grain-boundary model, while they are not stable in the bulk model. These results are consistent with experimental observations showing significant segregation of Ln3+ ions at the grain boundary and no solubility of Ln3+ into bulk β-Si3N4. Grain-boundary bonding is weakened with an increase of the ionic radius of the rare-earth ions, which provides a reasonable explanation for the ionic size dependence of the crack propagation behaviors as well as the growth rate of the prismatic plane in the rare-earth-doped β-Si3N4 during liquid-phase sintering.  相似文献   

11.
A microstructure that consisted of uniformly distributed, elongated β-Si3N4 grains, equiaxed β-SiC grains, and an amorphous grain-boundary phase was developed by using β-SiC and alpha-Si3N4 powders. By hot pressing, elongated β-Si3N4 grains were grown via alpha right arrow β phase transformation and equiaxed β-SiC grains were formed because of inhibited grain growth. The strength and fracture toughness of SiC have been improved by adding Si3N4 particles, because of the reduced defect size and the enhanced bridging and crack deflection by the elongated β-Si3N4 grains. Typical flexural-strength and fracture-toughness values of SiC-35-wt%-Si3N4 composites were 1020 MPa and 5.1 MPam1/2, respectively.  相似文献   

12.
A new method for preparing porous silicon nitride ceramics with high porosity had been developed by carbothermal reduction of die-pressed green bodies composed of silicon dioxide, carbon, sintering additives, and seeds. The resultant porous silicon nitride ceramics showed fine microstructure and uniform pore structure. The influence of SiO2 particle size and sintering process (sintering temperature and retaining time) on the microstructure of sintering bodies was analyzed. X-ray diffractometry demonstrated the formation of single-phase β-Si3N4 via the reaction between silicon dioxide and carbon at high temperature. SEM analysis showed that pores were formed by the banding up of rod-like β-Si3N4 grains. Porous Si3N4 ceramics with a porosity of 70–75%, and a strength of 5–8 MPa, were obtained.  相似文献   

13.
α-Si3N4 core structures within β-Si3N4 grains have been studied by transmission electron microscopy. The grains were dispersed in an oxynitride glass which was previously melted at 1600°C. The cores were topotactically related to the as-grown β-Si3N4 crystallites and are related to epitactical nucleation during heat treatment as the most probable mechanism.  相似文献   

14.
The microstructure, crystal structure, and chemical composition of reaction-sintered Si3N4 containing iron were studied using conventional and scanning transmission electron microscopy. It was found that the grains of β -Si3N4 were large and blocklike with well-developed facets, a series of voids along some grain boundaries, a subgrain of iron silicide near the periphery, and penetration of iron silicide into the three-grain junctions and grain boundaries. At some distance from each β -Si3N4 grain was a region of small α-Si3N4 grains, with no evidence of iron silicide. Between this region and the β -Si3N4 grain was a zone containing both α- and β -Si3N4 and iron silicide. These observations suggest that the large β -Si3N4 grains grow in liquid iron silicide, that the smaller α-Si3N4 grains grow from the vapor, and that the latter are converted to the β form by solution in, and reprecipitation from, liquid iron silicide.  相似文献   

15.
A distinct bimodal microstructure has been obtained in a Si3N4–BAS (barium aluminum silicate) ceramic-matrix composite by pressureless sintering. It is shown that the addition of coarse β-Si3N4 seeds causes abnormal grain growth in this composite, and hence encourages the formation of a bimodal microstructure. This abnormal grain growth is due to the nature of the heterogeneous nucleation mechanism in Si3N4α-to-β phase transformation, and is promoted by the transformation. After complete phase transformation, further abnormal grain growth is comparably slow and governed by the Ostwald ripening mechanism. Therefore, a stable bimodal microstructure can be easily achieved by pressureless sintering.  相似文献   

16.
A two-step sintering process is described in which the first step suppresses densification while allowing the α-to-β phase transformation to proceed, and the second step, at higher temperatures, promotes densification and grain growth. This process allows one to obtain a bimodal microstructure in Si3N4 without using β-Si3N4 seed crystals. A carbothermal reduction process was used in the first step to modify the densification and transformation rates of the compacts consisting of Si3N4, Y2O3, Al2O3, and a carbon mixture. The carbothermal reduction process reduces the oxygen:nitrogen ratio of the Y-Si-Al-O-N glass that forms, which leads to the precipitation of crystalline oxynitride phases, in particular, the apatite phase. Precipitation of the apatite phase reduces the amount of liquid phase and retards the densification process up to 1750°C; however, the α-to-β phase transformation is not hindered. This results in the distribution of large β-nuclei in a porous fine-grained β-Si3N4 matrix. Above 1750°C, liquid formed by the melting of apatite resulted in a rapid increase in densification rates, and the larger β-nuclei also grew rapidly, which promoted the development of a bimodal microstructure.  相似文献   

17.
The influence of phase formation on the dielectric properties of silicon nitride (Si3N4) ceramics, which were produced by pressureless sintering with additives in MgO–Al2O3–SiO2 system, was investigated. It seems that the difference in the dielectric properties of Si3N4 ceramics sintered at different temperatures was mainly due to the difference of the relative content of α-Si3N4, β-Si3N4, and the intermediate product (Si2N2O) in the samples. Compared with α-Si3N4 and Si2N2O, β-Si3N4 is believed to be a major factor influencing the dielectric constant. The high-dielectric constant of β-Si3N4 could be attributed to the ionic relaxation polarization.  相似文献   

18.
The in situ β-Si3N4/α'-SiAlON composite was studied along the Si3N4–Y2O3: 9 AlN composition line. This two phase composite was fully densified at 1780°C by hot pressing Densification curves and phase developments of the β-Si3N4/α'-SiAlON composite were found to vary with composition. Because of the cooperative formation of α'-Si AlON and β-Si3N4 during its phase development, this composite had equiaxed α'-SiAlON (∼0.2 μm) and elongated β-Si3N4 fine grains. The optimum mechanical properties of this two-phase composite were in the sample with 30–40%α', which had a flexural strength of 1100 MPa at 25°C 800 MPa at 1400°C in air, and a fracture toughness 6 Mpa·m1/2. α'-SiAlON grains were equiaxed under a sintering condition at 1780°C or lower temperatures. Morphologies of the α°-SiAlON grains were affected by the sintering conditions.  相似文献   

19.
Si3N4/SiC composite materials have been fabricated by reaction-sintering and postsintering steps. The green body containing Si metal and SiC particles was reaction-sintered at 1370°C in a flowing N2/H2 gas mixture. The initial reaction product was dominated by alpha-Si3N4. However, as the reaction processed there was a gradual increase in the proportion of β-Si3N4. The reaction-bonded composite consisting of alpha-Si3N4, β-Si3N4, and SiC was heat-treated again at 2000°C for 150 min under 7-MPa N2 gas pressure. The addition of SiC enhanced the reaction-sintering process and resulted in a fine microstructure, which in turn improved fracture strength to as high as 1220 MPa. The high value in flexural strength is attributed to the formation of uniformly elongated β-Si3N4 grains as well as small size of the grains (length = 2 μm, thickness = 0.5 μm). The reaction mechanism of the reaction sintering and the mechanical properties of the composite are discussed in terms of the development of microstructures.  相似文献   

20.
The kinetics of anisotropic β-Si3N4 grain growth in silicon nitride ceramics were studied. Specimens were sintered at temperatures ranging from 1600° to 1900°C under 10 atm of nitrogen pressure for various lengths of time. The results demonstrate that the grain growth behavior of β-Si3N4 grains follows the empirical growth law Dn– D0n = kt , with the exponents equaling 3 and 5 for length [001] and width [210] directions, respectively. Activation energies for grain growth were 686 kJ/mol for length and 772 kJ/mol for width. These differences in growth rate constants and exponents for length and width directions are responsible for the anisotropy of β-Si3N4 growth during isothermal grain growth. The resultant aspect ratio of these elongated grains increases with sintering temperature and time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号