首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 249 毫秒
1.
高温后新Ⅲ级钢筋力学性能的试验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
通过对37组共111根(?)16和(?)12新Ⅲ级钢筋高温后的力学性能试验,研究了经历不同受火温度和受火恒温时间 后的屈服强度、极限强度、弹性模量、延伸率和受拉应力-应变关系等力学性能的变化规律。试验表明。新Ⅲ级钢筋在经历 高温作用后,其屈服强度、极限强度和弹性模量在400℃以前变化不大,之后随所经历温度的升高而逐渐下降,降幅一般在 15%左右,实测的受拉应力-应变关系曲线,仍然出现明显的屈服台阶和强化段。根据试验结果,本文建议了高温后新Ⅲ 级钢筋屈服强度、极限强度、弹性模量、延伸率和受拉应力.应变全曲线计算公式。本文研究成果可作为火灾后混凝土结 构的损伤评估和非线性有限元全过程分析的依据。  相似文献   

2.
高强Q460钢高温冷却后力学性能研究   总被引:1,自引:0,他引:1  
为了评估高强Q460钢高温冷却后的力学性能,采用电炉对高强Q460钢进行加热升温,再采用自然冷却或浸水冷却方式冷却,然后进行拉伸试验,获得了高温冷却后高强Q460钢的应力-应变关系曲线、屈服强度、极限强度、弹性模量和极限伸长率.将高温冷却后高强Q460钢和普通Q235钢的屈服强度、极限强度和弹性模量进行对比.结果表明:高温后高强Q460钢力学性能与常温下力学性能相比有所变化,尤其是当温度超过700℃时,变化基本较大;700℃后,不同冷却方式对高强Q460钢极限强度和极限伸长率影响较大,浸水冷却后钢材的极限强度明显高于自然冷却后钢材的极限强度,而浸水冷却后钢材的极限伸长率则明显低于自然冷却后钢材的极限伸长率;高强Q460钢弹性模量和屈服强度受冷却方式的影响较小;高温冷却后高强Q460钢与普通Q235钢屈服强度、极限强度和弹性模量折减系数存在差异.  相似文献   

3.
钢绞线高温力学性能是研究预应力结构抗火性能及受火灾后结构损伤鉴定与评估的基础,本文从同一根钢绞线边丝中截取16根钢丝试件进行高温下拉伸试验,得到高温下钢丝试件拉伸的力-位移曲线、应力-应变关系曲线以及屈服强度、极限强度、比例极限、弹性模量与试验温度的关系。试验结果表明,高温下钢绞线钢丝的应力-应变关系曲线随温度升高趋于平缓,力学性能指标随温度升高不断退化。本文试验结果可以为研究预应力结构抗火性能的计算与分析提供参考。  相似文献   

4.
高温后不同冷却条件下钢材力学性能试验研究   总被引:2,自引:0,他引:2  
对经200 ℃,400 ℃,600 ℃和800 ℃热处理后的Q235钢材在自然冷却和浸水冷却两种冷却条件下的力学性能展开试验研究.描述了高温后钢材的表面特征,定性地探讨了受热温度、冷却方式对高温后钢材力学性能的影响,包括屈服强度、极限强度、弹性模量、伸长率和颈缩率,最后用最小二乘法建立了不同冷却条件下高温后钢材屈服强度和极限强度与热处理温度之间的数学模型,并将试验结果和模拟结果进行了比较.试验表明,高温后,钢材在自然冷却条件下,其力学性能基本不变;而在浸水冷却条件下,其力学性能的变化与热处理温度密切相关,尤其是热处理温度达到600 ℃以后,各项力学性能变化明显.  相似文献   

5.
500 Mpa细晶粒钢筋高温下的应力-应变关系   总被引:1,自引:0,他引:1  
通过拉伸试验,研究了20,200,300,400,500,600,700℃下500 MPa细晶粒钢筋屈服强度、极限强度、弹性模量、延伸率和受拉应力-应变关系的变化规律.结果表明,500MPa细晶粒钢筋屈服强度、极限强度以及弹性模量随温度的升高而逐渐下降,其屈服强度的变化规律与普通热轧钢筋有较大差异.基于试验数据,建议了高温下500 MPa细晶粒钢筋屈服强度、极限强度和弹性模量随温度变化的计算公式以及高温本构模型.  相似文献   

6.
为了对高温后镀锌钢材和低碳钢材力学性能进行研究,设计并制作了一批试样,对其进行拉伸试验。通过对不同加温后的镀锌钢材和低碳钢材拉伸曲线进行分析,探讨温度对拉伸曲线、屈服强度、弹性模量和极限强度的影响。试验表明,镀锌钢材和低碳钢材拉伸曲线分弹性阶段、屈服阶段、强化阶段和断裂阶段四个阶段,镀锌钢材、低碳钢材的屈服强度、极限强度、弹性模量随着加温温度的增加而降低;低碳钢材性能受温度的影响小于镀锌钢材;拟合的高温后钢材屈服强度和极限强度曲线与试验结果吻合较好。  相似文献   

7.
钢绞线高温力学性能是研究预应力结构抗火性能及受火灾后结构损伤鉴定与评估的基础。从同一根钢绞线边丝中截取16根钢丝试件进行高温后拉伸试验,得到高温后钢丝试件拉伸的应力-应变关系曲线以及屈服强度、极限强度、比例极限、弹性模量与试验温度的关系。试验结果表明,高温后钢绞线钢丝的力学性能指标在温度低于300℃时变化不明显,高于300℃时力学性能指标逐渐退化。试验结果可以为研究预应力结构受火灾后的损伤鉴定与评估提供参考。  相似文献   

8.
利用高温炉对00Cr17Ni14Mo2不锈钢开展了一系列高温下的稳态拉伸试验、瞬态拉伸试验和蠕变试验,测得了不锈钢在不同高温温度下的弹性模量、屈服强度、极限强度、极限应变、伸长率和蠕变应变.利用MATLAB软件对00Cr17Ni14Mo2不锈钢各力学性能(弹性模量、屈服强度、极限强度、极限应变、伸长率)与温度关系曲线和蠕变曲线进行了拟合.结果表明:当应力水平为0.2fu(fu为不锈钢常温极限强度)时,00Cr17Ni14Mo2不锈钢在较高温度(600℃)下的短期蠕变应变相当明显,在钢结构抗火计算时应考虑短期蠕变应变对钢结构响应的影响.所建立的00Cr17Ni14Mo2不锈钢各力学性能与温度关系方程均能较好地拟合试验结果.  相似文献   

9.
HRBF500钢筋高温后力学性能试验研究   总被引:1,自引:0,他引:1  
通过拉伸试验,研究20,100,200,300,400,500,600,700,800,900,1 000℃高温冷却后HRBF500钢筋屈服强度、极限强度、弹性模量、延伸率和受拉应力-应变关系的变化规律。结果表明,高温冷却后细晶钢筋,温度历程低于500℃时,钢筋的力学性能变化不明显;高于500℃时,随温度历程的升高,钢筋的应力-应变关系曲线逐渐软化,钢筋的各项力学指标逐渐退化。基于试验数据,提出了高温后500 MPa细晶粒钢筋屈服强度、极限强度和弹性模量随温度变化的计算公式,为开展细晶粒钢筋结构抗火性能分析及火灾后损伤评估提供基础性素材。  相似文献   

10.
通过国产Q690高强钢的稳态试验研究,得到20~800℃下钢材的试验现象、应力-应变关系曲线、力学性能参数,并将所得试验结果与相关规范和已有研究进行比较。研究发现:随温度升高,试验后钢材表面及断口形貌区别明显,应力-应变关系曲线的初始线弹性段缩短、极限应力对应应变减小、下降段趋于平缓;弹性模量、屈服强度和抗拉强度等力学性能指标随温度升高而降低;而断后伸长率在200~500℃时相较于常温值有小幅度下降,600℃后明显增加;当温度低于500℃时,不同名义屈服强度折减系数之间存在较大差异。目前已有研究建议的钢材高温力学性能模型并不适用于Q690高强钢,通过试验结果拟合得到了高温下Q690钢力学性能模型,以期用于Q690钢材的钢结构抗火安全评估与设计。  相似文献   

11.
高强钢高温下和高温后的力学性能是进行高强钢结构抗火设计和火灾后评估的重要基础。我国GB 51249—2017《建筑钢结构防火技术规范》和欧洲规范EC3中针对普通低碳钢提出了高温下屈服强度和弹性模量计算公式,但其不适用于高强钢。国内外学者对高温下和高温后高强钢力学性能已开展了一系列试验研究,但由于钢材强度等级、试验设备、加热速率和加载制度等影响,导致试验结果离散性较大,不能应用于实际工程中。同时不同学者提出的力学性能指标计算式各不相同,均不具有普遍适用性。采用数理统计中t分布与置信区间的方法对高强钢高温下和高温后力学性能试验数据进行统计分析,得到不同温度下力学性能指标具有95%保证率的标准值,拟合出高强钢高温下和高温后力学性能指标的计算式,并与GB 51249—2017和欧洲规范EC3预测结果进行对比。结果表明:自然冷却和浸水冷却条件下,高强钢高温后屈服强度发生明显下降的转折点分别是600℃和 500℃;高温下高强钢的屈服强度折减系数低于普通结构钢;高强钢弹性模量折减系数在作用温度小于600℃时低于普通结构钢的,而在温度大于600℃时高于普通结构钢的。  相似文献   

12.
高强钢高温下和高温后的力学性能是进行高强钢结构抗火设计和火灾后评估的重要基础。我国GB 51249—2017《建筑钢结构防火技术规范》和欧洲规范EC3中针对普通低碳钢提出了高温下屈服强度和弹性模量计算公式,但其不适用于高强钢。国内外学者对高温下和高温后高强钢力学性能已开展了一系列试验研究,但由于钢材强度等级、试验设备、加热速率和加载制度等影响,导致试验结果离散性较大,不能应用于实际工程中。同时不同学者提出的力学性能指标计算式各不相同,均不具有普遍适用性。采用数理统计中t分布与置信区间的方法对高强钢高温下和高温后力学性能试验数据进行统计分析,得到不同温度下力学性能指标具有95%保证率的标准值,拟合出高强钢高温下和高温后力学性能指标的计算式,并与GB 51249—2017和欧洲规范EC3预测结果进行对比。结果表明:自然冷却和浸水冷却条件下,高强钢高温后屈服强度发生明显下降的转折点分别是600℃和 500℃;高温下高强钢的屈服强度折减系数低于普通结构钢;高强钢弹性模量折减系数在作用温度小于600℃时低于普通结构钢的,而在温度大于600℃时高于普通结构钢的。  相似文献   

13.
通过升温、冷却和拉伸试验,对历经300~900℃高温后的Q690钢材在自然冷却和浸水冷却条件下的力学性能展开试验研究。结果表明:经高温冷却的Q690钢材在不同温度和不同冷却方式下有不同的外观特征;受热温度超过500℃时,高温冷却对Q690钢材的弹性模量影响很小,对其强度和伸长率影响较大;当受热温度不超过700℃时,Q690钢材高温后的强度和伸长率在两种冷却方式下具有基本相同的变化规律;在700~800℃之间,不同冷却方式对Q690钢材高温后强度和伸长率产生影响,且随温度升高差别愈加明显,自然冷却条件下强度降低且伸长率增大,浸水冷却条件下强度增大且伸长率减小。将Q690钢材高温后力学性能与Q235钢材和Q460钢材比较,认为不同强度等级钢材高温后的力学性能差别显著,在自然冷却条件下较高强度钢材(Q690)的强度衰减和延性增长大于较低强度钢材(Q235和Q460)的。根据试验结果,建立了不同冷却条件下的高温后各力学参数与受热温度之间的数学模型,该模型可用于火灾后Q690钢结构的承载能力的评估。  相似文献   

14.
为研究热冲压球壳Q235钢材高温后的力学性能,对经历400~900℃高温后由自然冷却和喷水冷却到常温空心球加工制作成的受拉试样进行拉伸试验,得到高温冷却后该材料的应力-应变曲线、弹性模量、屈服强度、抗拉强度和断后伸长率,并与普通Q235钢高温后力学性能进行了对比。研究结果表明:当经历温度不超过500℃时,钢材高温后强度与断后伸长率在两种冷却方式下变化规律基本类似,且变化很小。当经历温度超过500℃后,不同冷却方式对材料高温后强度与断后伸长率产生明显影响,且温度越高,相差越大,自然冷却方式下,随着温度的升高,强度降低而断后伸长率变大。喷水冷却方式下,抗拉强度增大而伸长率减小,屈服强度在500~700℃之间逐渐增大,700℃之后又快速下降。弹性模量受经历温度与冷却方式的影响较小。  相似文献   

15.
高温后HRBF500细晶粒钢筋力学性能试验研究   总被引:4,自引:1,他引:3  
试验研究了16组共48根HRBF500细晶粒钢筋在常温和高温冷却作用后(5种温度、3种冷却方式)的力学性能,得到了不同高温冷却作用后细晶粒钢筋的应力-应变关系,分析了屈服强度、抗拉强度、弹性模量、断后伸长率、均匀伸长率、截面收缩率等的变化规律。试验表明:温度作用相对较低时(300℃、400℃、600℃),细晶粒钢筋力学性能变化不明显;温度作用相对较高时(700℃、900℃),细晶粒钢筋各项力学指标逐渐退化。根据试验结果,经回归分析建议了高温后细晶粒钢筋屈服强度、抗拉强度、弹性模量、断后伸长率的计算公式。研究成果可作为火灾后采用HRBF500级细晶粒钢筋混凝土结构的损伤评估的依据。图12表6参7  相似文献   

16.
选择性激光熔融技术(Selective Laser Melting, SLM)是一种常用的金属增材制造方法,在过去20多年里得到快速发展。然而,产品力学性能缺乏全面描述的问题仍然阻碍着这一技术在土木工程中进一步的发展与应用。文章分别采用两种SLM生产设备制备了两种厚度、五个方向的共48个316L不锈钢制样,通过拉伸试验获得其基本力学性能。制样的弹性模量范围为172.61~215.55 GPa,屈服强度为446.90~583.47 MPa,极限强度为576.22~734.43 MPa,延伸率为20.69%~49.56%。屈服强度和极限强度均远高于经固溶处理的316L不锈钢型钢板和钢带规范值,且均高于未退火处理的锻件水平;屈强比也远高于经固溶处理的不锈钢型钢板和钢带水平。不同设备、不同厚度和不同方向制样的力学性能表现出较为明显的差异。结合进一步的断口扫描电镜试验和已有文献结果,分析不同生产设备、不同厚度、不同方向制样的力学性能存在差异的原因及随角度变化趋势。  相似文献   

17.
为了研究钛钢复合板材的力学性能,对TA2+Q235B复合板材进行拉伸剪切试验.基于复合比的影响,通过试验分析得到钛钢复合板的基本力学性能指标.结果表明,钛钢复合板的应力应变曲线与复合比的大小有关.随着拉伸强度的加大,复合比增大,屈服阶段逐渐消失,弹性模量减小,但钢材的抗拉强度变化并不明显.本文基于钛钢复合板的抗拉力学试...  相似文献   

18.
为研究Q690D高强度钢材及焊缝连接件在常温和高温后的断裂性能,选取代表实际梁柱节点局部焊接构造的十字形焊接节点试样,完成了常温和一系列高温后Q690D钢材和ER80-G焊缝金属的单轴拉伸试验,得到了钢材和焊缝金属在不同高温后的弹性模量、屈服强度、极限强度和延伸率.开展了常温和高温后十字形焊接接头的单调拉伸试验和超低周...  相似文献   

19.
完成了聚丙烯纤维(PPF)体积掺量分别为0、0.1%、0.2%和0.3%的活性粉末混凝土(RPC)经20~900℃后的力学性能试验,包括70.7 mm×70.7 mm×70.7 mm立方体受压试验、70.7 mm×70.7 mm×228.0 mm棱柱体受压试验、40 mm×40 mm×160 mm棱柱体受折试验和“8”字形试件轴心受拉试验。考察了PPF对RPC高温爆裂的抑制效果,分析了PPF掺量和经历温度对RPC高温后力学性能(残余立方体抗压强度、残余轴心抗压强度、残余抗折强度和残余轴心抗拉强度)的影响。结果表明:PPF体积掺量0.1%和0.2%时对RPC高温爆裂的抑制作用不明显,体积掺量0.3%时可以防止RPC发生爆裂;常温下PPF的掺入对RPC力学性能有不利影响,经历温度高于200℃时,随PPF掺量的增大高温后RPC力学性能相应提高;掺PPF的RPC高温后残余抗压强度、残余抗折强度和残余轴心抗拉强度均随经历温度的升高先增大后减小,3种强度的临界温度分别为300℃、300℃和120℃。根据试验统计数据建立了高温后PPF体积掺量不同的RPC残余抗压强度、残余抗折强度和残余轴心抗拉强度随温度变化的计算式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号