首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
For ice storage, one of the authors has previously reported on the ice slurry formed by cooling water–silicone oil mixture with stirring. When the mixture is stirred in a vessel, the oil is charged due to static electricity. If the vessel can attract the charged oil, suppression of ice adhesion force to a cooling wall may be possible. In this study, therefore, a certain voltage was applied to the vessel filled with the mixture with cooling and stirring simultaneously, and water was frozen in the vessel. Then, the ice adhesion force to the cooling vessel wall was measured under a constant apparent adhesion area between the ice and cooling vessel wall. From the measurement results, optimal conditions of the oil viscosity, rotation speed and applied voltage to suppress the ice adhesion force effectively were clarified. Moreover, the factors governing suppression of the ice adhesion force were clarified.  相似文献   

2.
For ice storage, one of authors has studied new ice slurry formed by cooling a water–oil mixture with stirring. When the mixture is stirred in a vessel, oil is charged by static electricity due to friction. If the vessel wall can attract charged oil, prevention of ice adhesion to the wall may be realized. Therefore, in this paper, in order to observe behavior of charged water–oil droplet or mixture in electric field by a high speed camera or video camera, two types of experiments were carried out. One was that the water–oil droplet charged by static electricity was made to fall plumb down between two electrodes with electric field or without electric field, varying the water content of droplet. The other was that a constant voltage was applied on the vessel filled with the water–oil mixture stirred. From experiments, it was confirmed that attracting force between the charged wall (electrode) and charged oil acted.  相似文献   

3.
In many situations, ice often adheres to a cooling solid surface, frequently causing serious accidents. It is critical to clarify the mechanism of ice adhesion to the cooling surface in order to prevent ice adhesion. In a past study, the shearing stresses of two kinds of test plates with a copper surface having the higher thermal conductivity were measured. The shearing stress corresponds to ice adhesion force. Both shearing stresses were significantly different; however, the cause remains unclear.Therefore, the present study focuses on an oxide layer as the main factor causing the difference of both shearing stresses; the influence of the oxide layer formed on shearing stress was discussed. And in the removal and reformation processes of the oxide layer, the time variation of the shearing stress was clarified. Moreover, the relationship between the state of the copper surface and the shearing stress was also clarified by surface analysis.  相似文献   

4.
The surface tensions of R290, R600a and R290/R600a mixture have been measured by the modified differential capillary-rise method. Twenty-two data points for R290 and 21 data points for R600a were obtained in the temperature range between 273 K and 354 K, and 43 data points for R290/R600a mixture on three isotherms of 278 K, 300 K and 320 K were obtained. The experimental uncertainties of temperature and surface tension are estimated to be within 20 mK and 0.2 mN m−1, respectively. Surface tension correlations as a function of temperature for pure R290 and R600a were formulated in the temperature range between 253 K and critical temperature, and the correlation as a function of the composition for R290/R600a mixture was discussed at 278 K, 300 K and 320 K. It is found that the surface tension for R290/R600a mixture can be reproduced by the simple mixing rule by mole fraction with the correlations of both pure components.  相似文献   

5.
This paper investigates the effect that an additive had on the boiling performance of an R134a/polyolester lubricant (POE) mixture and an R123/naphthenic mineral oil mixture on a roughened, horizontal flat surface. Both pool boiling heat transfer data and lubricant excess surface density data are given for the R134a/POE (98% mass fraction/2% mass fraction) mixture before and after use of the additive. A spectrofluorometer was used to measure the lubricant excess density that was established by the boiling of the R134a/POE lubricant mixture before and after use of the additive. The measurements obtained from the spectrofluorometer suggest that the additive increases the total mass of lubricant on the boiling surface. The heat transfer data show that the additive caused an average and a maximum enhancement of the R134a/POE heat flux between 5 kW m−2 and 22 kW m−2 of approximately 73% and 95%, respectively. Conversely, for nearly the same heat flux range, the additive caused essentially no change in the pool boiling heat flux of an R123/mineral oil mixture. The lubricant excess surface density and interfacial surface tension measurements of this study were used to form the basis of a hypothesis for predicting when additives will enhance or degrade refrigerant/lubricant pool boiling.  相似文献   

6.
This paper presents a study on the impact of the roughness of a metallic surface on the magnitude of the supercooling during freezing of an aqueous solution. Aqueous solutions of ethanol (5%, 10% and 15% w/w) were used as model solutions. Five tubes of aluminium (internal diameter 8 mm) were machined to obtain a roughness between 0.63 and 13.3 μm. These tubes were immersed in a refrigerated bath with a programmable temperature scan. Thermocouples located at the inner surface of the tubes and in the solution were used to measure the magnitude of supercooling. Crystallisations were monitored and supercooling released calculated for each experiments. Our experimental results reveal that roughness is the influencing parameter of the supercooling released: larger the roughness, lower the supercooling. Moreover, a power law correlation between the roughness and supercooling was deduced.  相似文献   

7.
Study on latent heat of fusion of ice in aqueous solutions   总被引:2,自引:0,他引:2  
In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were used as aqueous solutions. For measurements, pure ice was placed into solution, and temperature variations of the solution due to melting of ice were measured. Effective latent heat of fusion was calculated using an energy balance equation. Concentration of the solution varied due to ice melting, and dilution heat was considered. Therefore, latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. We found that effective latent heat of fusion of ice decreased with increasing concentration of the solution, and effective latent heat of fusion was derived from latent heat of fusion of pure ice, effects of freezing-point depression, and dilution heat.  相似文献   

8.
Shell-side heat transfer coefficients of individual tubes for ammonia/lubricant mixture boiling on a 3 × 5 enhanced tube bundle were measured, enabling a detailed study of tube bundle effect under the influences of inlet quality, concentration of miscible lubricant (co-polymer of polyalkylene glycol, PAG), saturation temperature, and heat flux. Tests were conducted in the range of heat flux from 3.2 to 32.0 kW/m2, simulated inlet quality from 0.0 to 0.4, saturation temperature from −13.2 to +7.2 °C, and lubricant concentration from 0 to 10%. The data show that bundle effect is more significant at a higher saturation temperature. Most of the data in the bottom row are lower than the single-tube heat transfer coefficient data at a low saturation temperature. Lubricant renders the heat transfer coefficient lower in lower rows and higher in higher rows, therefore a larger range of data variation.  相似文献   

9.
This paper reports on the experimental research and the theoretical analysis conducted to study the condensation of the ammonia–water mixture on a horizontal smooth tube. Experiments were carried out with ammonia concentrations and wall subcoolings ranging from 62% to 95% and from 45 °C to 90 °C, respectively. Experimental results of the overall condensation heat transfer coefficients (HTCs) are reported and discussed. A theoretical model based on the analytical method proposed by Colburn and Drew was developed. The model was able to predict the trends of the experimental HTCs for the ranges of concentrations and wall subcoolings considered in the experiments. The heat flow and the overall condensation HTCs were slightly overestimated with mean errors of 9.3% and 11.2%, respectively. The theoretical results revealed that the ammonia mass transfer in the vapour phase has a significant effect on the heat and mass transfer coefficients and, consequently, on the overall condensation HTCs. Finally, a calculation procedure was established to estimate the vapour mass and heat transfer coefficients from experimental data. The results are shown as dimensionless correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号