首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
深过冷技术制备均质过偏晶合金及其形成机制的研究   总被引:1,自引:0,他引:1  
采用熔融玻璃净化和循环过热相结合的方法使Ni 40 % (质量分数 )Pb合金获得 2 92K大过冷度 ,成功制备出大体积均质过偏晶合金。根据BCT模型和组织演化结果分析表明 :过冷粒状晶是在内应力的作用下 ,枝晶发生全面碎断 ,随后在枝晶段表面和应变能的驱动下使晶界移动发生再结晶的结果 ,即枝晶碎断 再结晶机制 ;试样基体上弥散分布的细密铅颗粒是由于快速凝固阶段溶质截留效应而形成的 ,少量较大尺寸铅颗粒的形成主要与慢速凝固阶段分布于枝晶骨架间残余富铅液相的聚合有关。  相似文献   

2.
Spangle formation in galvanized sheet steel coatings   总被引:2,自引:0,他引:2  
Very large grains, termed “spangles,” are produced on galvanized sheet steel coatings when lead is added to the zinc bath. The spangles have been attributed to melt undercooling prior to solidification. The present results indicate this is not the case, undercooling being less than 1 °C. The spangle diameter is shown to be dependent on the alloy addition to the bath, large spangles being obtained with Bi and Sb as well as Pb. The spangle size is related to the surface tension of the alloying addition, the size decreasing as the melt vapor surface tension of the alloying element increases. It is proposed that spangles form dendritically from a nucleus in the melt. Alloy additions with low interfacial energies and very limited solid solubility are highly concentrated ahead of the dendrite tip. This decreases the tip radius and increases the dendrite velocity, producing large grains. The basal plane orientation of the samples varies between 17 and 80 deg with respect to the steel sheet surface, which is inconsistent with basal plane dendritic growth in Zn along (1010) directions. It is proposed that solute additions to the melt and growth in a thin liquid layer can modify the dendrite growth direction, accounting for the spangle orientation. On leave from Obafemi Awolowo University, lie Ife, Oyo State, Nigeria  相似文献   

3.
Solidification and spangle formation of hot-dip-galvanized zinc coatings   总被引:4,自引:0,他引:4  
Solidification of hot dip coatings was studied regarding thermal conditions. Optical phenomena occurring at the liquid zinc surface were documented and the solid zinc surface was characterized in respect to optical and microscopic appearance, distribution of Pb and Al, crystal orientation, and topography. Resulting from these observations, a solidification model can be derived: zinc nucleation occurs at the steel/zinc interface. Due to thermal conditions in the slightly undercooled liquid zinc film, solidification occurs by rapid sideways dendritic expansion of the nucleated grains along the steel/zinc interface. Dendritic growth is controlled by interaction of crystal orientation of the nucleated zinc grain and thermal conditions in the undercooled layer. This leads to formation of different shaped grains with thicker and thinner sectors. The mechanism of sideways expansion continues until the entire interface is covered with dendritic zinc grains. Even though the zinc outer surface is still a liquid phase, final spangle size, as well as surface appearance and shape of the grains, is already determined at that early stage of solidification. Further growth only leads to a thickening of the solid layer; however, its relief remains almost unchanged. Thickening occurs relatively slowly due to the fact that marginal heat flow toward the surface now represents the limiting factor. Growth of the solid zinc layer results in continuous enrichment of Pb and Al in the residual liquid. Then, outer surface solidification starts as segments of single grains emerge. Distribution of the enriched residual melt in between the already solid areas depends on the relief of the solid layer. Finally, eutectic Zn-Pb reaction with precipitation of Pb particles takes place, which defines the dull appearance of these regions. Solidification for “lead-free” coatings is essentially the same, except that the final eutectic Zn-Pb reaction is missing. Additional investigations of dendritic secondary arm spacing indicate that Pb does not act by suppressing zinc nucleation. Pronounced dendritic growth is proposed to be favored by a change in interfacial energy. The new solidification model is applicable for a wide range of processing conditions and explains the origin of the typical spangle structure.  相似文献   

4.
Microstructure of gas-atomized CuSn6 particles has been investigated using scanning electron microscopy (SEM), and it is shown that the dendrite arm spacing (DAS) is related to the particle diameter (d) so that DAS=0.19d 0.72. Formation of microstructures in the particles are modeled using a numerical solidification model. This model concerns tips of cells and dendrites, but in the present investigation, it is, in a simple manner, extended to comprise whole cells and dendrites. Furthermore, ripening of dendrite arms is taken into consideration. It is found that for increasing growth rates there is a transition from dendrites to cells when the growth velocity approaches the diffusional velocity in the melt,i.e., when the Peclet number is equal to one. It is also shown that both primary stem spacing and dendrite spacing are related to the ratio between the volume in the liquid where there is solute diffusion and to the surface area of the cells and dendrites (D/A). The relation between spacing and D/A is the same for cells and dendrites, indicating that the spacing selection is controlled purely by solute diffusion in the melt.  相似文献   

5.
Two types of dendrite tip splitting including dendrite orientation transition and twinned-like dendrites in Fe-C alloys were investigated by phase-field method.In equiaxed growth, the possible dendrite growth directions and the effect of supersaturation on tip splitting were discussed;the dendrite orien-tation transition was observed, and it was found that the orientation regions of anisotropy parameters were reduced from three to two with increasing the supersaturation, which was due to the effect of interfacial anisotropy controlled by the solute in front of S/L interface changing with the increase of supersaturation.In directional solidification, it was found that the twinned-like dendrites were formed with the fixed anisotropy couples and no seaweed dendrites were observed;these were concluded from the results of competition between process anisotropy and inherent anisotropy.The formation process of twinned-like dendrite was investigated by tip splitting phenomenon, which was related to the chan-ges of dendrite tips growth velocity.Then, the critical speed of tips splitting and solute concentration of twinned-like dendrites were investigated, and a new type of microsegregation in Fe-C alloys was proposed to supplement the dendrite growth theories.  相似文献   

6.
The competitive grain growth in bicrystal samples during unidirectional solidification of a Ni-based superalloy was found to depend on secondary dendrites perpendicular to the grain boundary of bicrystal samples, rather than primary dendrites parallel to the thermal gradient as generally recognized. The primary dendrite orientation, however, had significance for the dendrite blocking in overgrowth processes and the resultant overgrowth rate during competitive grain growth.  相似文献   

7.
The rate of solidification of dilute tin-lead alloys has been measured as a function of the initial undercooling (up to 45°C) and the solute content (up to 2 wt pct lead). Solidified specimens were examined by metallography and X-ray diffraction to obtain information on the solidification process and the resulting grain structure. Over an intermediate range of undercoolings, it was found that dendrites grow in the tin-lead alloys as much as four times faster than in pure tin at the same undercooling. This result is inconsistent with any present theories for dendrite growth kinetics in binary alloys. At both lower and higher undercoolings there is no evidence for growth by simple extension of dendrites along the specimen, and solidification rate measurements made under these conditions are probably not indicative of normal dendrite growth kinetics. A. W. Urquhart and G. L. F. Powell were formerly at the Thayer School of Engineering.  相似文献   

8.
 Solute diffusion controlled solidification model was used to simulate the initial stage cellular to dendrite transition of Ti44Al alloys during directional solidification at different velocities. The simulation results show that during this process, a mixed structure composed of cells and dendrites was observed,where secondary dendrites are absent at facing surface with parallel closely spaced dendrites, which agrees with the previous experimental observation. The dendrite spacings are larger than cellular spacings at a given rate, and the columnar grain spacing sharply increases to a maximum as solidification advance to coexistence zone. In addition, simulation also revealed that decreasing the numbers of the seed causes the trend of unstable dendrite transition to increase. Finally, the main influence factors affecting cell/dendrite transition were analyzed, which could be the change of growth rates resulting in slight fluctuations of liquid composition occurred at growth front. The simulation results are in reasonable agreement with the results of previous theoretical models and experimental observation at low cooling rates.  相似文献   

9.
Solute diffusion controlled solidification model was used to simulate the initial stage cellular to dendrite transition of Ti44Al alloys during directional solidification at different velocities. The simulation results show that during this process, a mixed structure composed of cells and dendrites was observed, where secondary dendrites are absent at facing surface with parallel closely spaced dendrites, which agrees with the previous experimental observation. The dendrite spacings are larger than cellular spacings at a given rate, and the columnar grain spacing sharply increases to a maximum as solidification advance to coexistence zone. In addition, simulation also revealed that decreasing the numbers of the seed causes the trend of unstable dendrite transition to increase. Finally, the main influence factors affecting cell/dendrite transition were analyzed, which could be the change of growth rates resulting in slight fluctuations of liquid composition occurred at growth front. The simulation results are in reasonable agreement with the results of previous theoretical models and experimental observation at low cooling rates.  相似文献   

10.
The solidification of the interdendritic liquid in austenitic 110G13L steel and white cast iron is studied. In the absence of dendrite coarsening, the solidification mechanism of the interdendritic liquid in the manganese steel is shown to change and solidification occurs in the form of polycrystalline aggregates around dendrites from different centers. The relation between the standard solidification of the interdendritic liquid and the dendrite coarsening in iron alloys is grounded.  相似文献   

11.
In this study,morphological and microstructural analyses were conducted on net-shaped microcracks appearing on the surface of low-carbon steel manufactured via twin-roll strip casting. The fractograph and microscale distribution of elements in the cracked region were also analyzed. Results revealed that the cracked surfaces were characterized by slight pits,along with inclusions composed of manganese and silicon oxide distributed along both the sides of the cracks. Fractograph analysis revealed that the crack and smooth dendrite surfaces were oxidized. These phenomena indicate that microcracks on the cast strip surface form at the hightemperature stage of the solidification process during twin-roll casting and rolling. Microcracks were present in each region with pits in the cast strip and extended along the dendrite interface because of the combined effects of phasechange stress,thermal stress,mechanical stress,and fractional crystallization during the solidification process.  相似文献   

12.
Dendrite growth is an important phenomenon during steel solidification. In the current paper, a numerical method was used to analyse and calculate the dendrite tip radius, dendrite growth velocity, liquid concentration, temperature gradient, cooling rate, secondary dendrite arm spacing, and the dendrite tip temperature in front of the solid/liquid (S/L) interface for the solidification process of medium carbon steels during continuous casting. The current model was well validated by published models and measurement data. The results show that in the continuous casting process, the dendrite growth rate is dominated by the casting speed. Dendrite growth rate, liquid concentration at the S/L interface, temperature gradient and cooling rate decrease with proceeding solidification and solid shell thickness growth, while other parameters such as dendrite tip radius, secondary dendrite arm spacing, and dendrite tip temperature in front of the S/L interface become larger with solidification progress and solid shell thickness growth. Parametric investigations were carried out. The effects of the stability coefficient, temperature gradient and casting speed on the micro‐structural parameters were discussed. Under the same conditions, higher casting speed promotes coarser secondary dendrite arm spacing and enlarges the dendrite tip radius, while decreasing temperature gradient, reducing the dendrite growth rate and making the solute distribute more uniform.  相似文献   

13.
A phase‐field model is applied to the simulation of microsegregation and microstructure formation during the solidification of multicomponent alloys. The results of the one‐dimensional numerical simulations show good agreement with those from the Clyne–Kurz equation. Phase‐field simulations of non‐isothermal dendrite growth are examined. Two‐dimensional computation results exhibit different dendrites in multicomponent alloys for different solute concentrations. Changes in carbon concentration appear to affect dendrite morphology. This is due to a larger concentration and a lower equilibrium partition coefficient for carbon. On the other hand, changes in phosphorus concentration affect the dendrites and interface velocity in multicomponent alloys during solidification when phosphorus content is increased from 10?3 mol% P. With additional manganese, the solidification kinetics slow down; dendrite morphology, however, is not affected. The potential of the phase‐field model for applications pertaining to solidification has been demonstrated through the simulations herein.  相似文献   

14.
An analytical model that describes solidification of equiaxed dendrites has been developed for use in solidification kinetics-macrotransport modeling. It relaxes some of the assumptions made in previous models, such as the Dustin-Kurz, Rappaz-Thevoz, and Kanetkar-Stefanescu models. It is assumed that nuclei grow as unperturbed spheres until the radius of the sphere becomes larger than the minimum radius of instability. Then, growth of the dendrites is related to morphological instability and is calculated as a function of melt undercooling around the dendrite tips, which is controlled by the bulk temperature and the intrinsic volume average concentration of the liquid phase. When the general morphology of equiaxed dendrites is considered, the evolution of the fraction of solid is related to the interdendritic branching and dynamic coarsening (through the evolution of the specific interfacial areas) and to the topology and movement of the dendrite envelope (through the tip growth velocity and dendrite shape factor). The particular case of this model is the model for globulitic dendrite. The intrinsic volume average liquid concentration and bulk temperature are obtained from an overall solute and thermal balance around a growing equiaxed dendritic grain within a spherical closed system. Overall solute balance in the integral form is obtained by a complete analytical solution of the diffusion field in both liquid and solid phases. The bulk temperature is obtained from the solution of the macrotrasport-solidification kinetics problem.  相似文献   

15.
Some features of dendrite coarsening are studied on individual columnar dendrites in a large steel ingot. The coarsening of dendrite arms in Chernov columnar crystals is observed only in the zone of conventional solidification. In the tips of crystals that penetrate into the shrinkage cavity of the ingot, the initial sizes of the dendrite arms do not change. The coarsening of the primary arms is shown to cause crystal fragmentation into individual dendrites.  相似文献   

16.
Theories of dendritic growth currently ascribe pattern details to extrinsic perturbations or other stochastic causalities, such as selective amplification of noise and marginal stability. These theories apply capillarity physics as a boundary condition on the transport fields in the melt that conduct the latent heat and/or move solute rejected during solidification. Predictions based on these theories conflict with the best quantitative experiments on model solidification systems. Moreover, neither the observed branching patterns nor other characteristics of dendrites formed in different molten materials are distinguished by these approaches, making their integration with casting and microstructure models of limited value. The case of solidification from a pure melt is reexamined, allowing instead the capillary temperature distribution along a prescribed sharp interface to act as a weak energy field. As such, the Gibbs-Thomson equilibrium temperature is shown to be much more than a boundary condition on the transport field; it acts, in fact, as an independent energy field during crystal growth and produces profound effects not recognized heretofore. Specifically, one may determine by energy conservation that weak normal fluxes are released along the interface, which either increase or decrease slightly the local rate of freezing. Those responses initiate rotation of the interface at specific locations determined by the surface energy and the shape. Interface rotations with proper chirality, or rotation sense, couple to the external transport field and amplify locally as side branches. A precision integral equation solver confirms through dynamic simulations that interface rotation occurs at the predicted locations. Rotations points repeat episodically as a pattern evolves until the dendrite assumes a dynamic shape allowing a synchronous limit cycle, from which the classic repeating dendritic pattern develops. Interface rotation is the fundamental mechanism responsible for dendritic branching.  相似文献   

17.
Theories of dendritic growth currently ascribe pattern details to extrinsic perturbations or other stochastic causalities, such as selective amplification of noise and marginal stability. These theories apply capillarity physics as a boundary condition on the transport fields in the melt that conduct the latent heat and/or move solute rejected during solidification. Predictions based on these theories conflict with the best quantitative experiments on model solidification systems. Moreover, neither the observed branching patterns nor other characteristics of dendrites formed in different molten materials are distinguished by these approaches, making their integration with casting and microstructure models of limited value. The case of solidification from a pure melt is reexamined, allowing instead the capillary temperature distribution along a prescribed sharp interface to act as a weak energy field. As such, the Gibbs-Thomson equilibrium temperature is shown to be much more than a boundary condition on the transport field; it acts, in fact, as an independent energy field during crystal growth and produces profound effects not recognized heretofore. Specifically, one may determine by energy conservation that weak normal fluxes are released along the interface, which either increase or decrease slightly the local rate of freezing. Those responses initiate rotation of the interface at specific locations determined by the surface energy and the shape. Interface rotations with proper chirality, or rotation sense, couple to the external transport field and amplify locally as side branches. A precision integral equation solver confirms through dynamic simulations that interface rotation occurs at the predicted locations. Rotations points repeat episodically as a pattern evolves until the dendrite assumes a dynamic shape allowing a synchronous limit cycle, from which the classic repeating dendritic pattern develops. Interface rotation is the fundamental mechanism responsible for dendritic branching.  相似文献   

18.
The convective transport and gravitational settling of unattached equiaxed grains and dendrite fragments can cause macrosegregation and influence the structure of the equiaxed zone in a variety of solidification arrangements. An understanding of how the highly nonspherical geometry of the dendrite influences its settling and transport characteristics is needed to determine the motion of unattached dendrites and predict structure and segregation in castings. The empirical results of previous works have been used to develop a FORTRAN 77 computer program to calculate the settling velocity of various dendritic shapes and a number of other parameters of interest, such as the volume and surface area of the dendrite. Required inputs to the code are the physical properties of the system and some simple geometric parameters of the dendrite being considered, such as the average radius of the primary arm. The predicted settling velocities were on average within ±5 pct of those measured for model dendrites and were consistent and in good agreement with three other experimental investigations. Future development of the code will attempt to overcome many of its present limitations by including particle-particle interactions and the effects of tertiary arms, for example. Formerly Graduate Student at the University of Iowa.  相似文献   

19.
The aim of the current article is to elucidate the significant effects of macrosegregation distribution and its level on the different stages of interdendritic crack formation during dendritic solidification in continuously cast steel slabs. Couple formations of macrosegregation and interdendritic crack phenomena during dendritic solidification of peritectic carbon steels have been investigated by metallographic study of collected slab samples and by performing a set of mathematical analyses. The metallographic study involved plant trails to measure slab surface temperature of different secondary spray cooling conditions. Also, macro–microexaminations, measurements of dendrite arm spacing, macrosegregation analysis, and interdendritic distance between the dendrites of collected samples from plant trials have been performed. The experimental results show a fluctuation of carbon segregation with respect to distance from slab surface. These results also reveal that the interdendritic cracks vary with this fluctuation in various nano, macro, and microscales based on the cooling conditions. A mathematical model of heat transfer, solidification, structure evolution, interdendritic strain, macrosegregation, and elementary interdendritic area “EIA” has been developed. This model takes also into account the calculating of interdendritic distance between the dendrites “IDD” to evaluate the interdendritic crack width. The model predictions of different thermal and solidification phenomena show a good agreement with measurements. The results pointed out also that the coupled effect of interdendritic strain and macrosegregation phenomena and their distributions can be considered as the most important tools to evaluate the surface and internal interdendritic cracks in continuously cast steel slabs. The formation mechanisms of different types of interdendritic crack with interdendritic strain patterns and fluctuation of macrosegregation levels during various cooling zones have been explained, and the possible solutions to these problems have been discussed.  相似文献   

20.
The effect of withdrawal rates on the three-dimensional dendrite growth within the shrouds of single crystal blades during directional solidification was studied by both experiments and numerical simulations. The results showed that at given withdrawal rates, the dendrite pattern within the shrouds comprised three zones: primary dendrite zone, secondary dendrite spread zone, and a higher-order dendrite branched zone. With increasing withdrawal rate, the average primary dendrite arm spacing in the primary dendrite zone and the average secondary dendrite arm spacings in both the secondary dendrite spread zone and the higher-order dendrite branched zone were reduced. Independent of the variation in withdrawal rate, two analogous dendrite growth routes were observed within the shrouds of the employed blade geometry. These routes originated from the primary dendrites in the primary dendrite zone and filled in the shrouds by directly spreading secondary or successively branching higher-order dendrites. Except for a withdrawal rate of 6 mm min?1, these dendrites impinged at the shroud’s highest extremity and could be explained by the simulated moving isotherms. As the withdrawal rate was increased to 2.5 mm min?1, undercooling and contraction stress-related equiaxed grains were observed in the interdendritic region at the lowest shroud extremity. With increasing withdrawal rate, the amount of the defects was increased. Since the defects destroy the integrity of single crystal blades, the solidification condition within the shroud should be controlled to avoid their occurrence. Along the dendrite growth route, an accumulated misorientation of the dendrites was observed. At the same positions, this accumulation increased with increasing withdrawal rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号