共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
高炉自焙炭块炉衬技术的现状与发展 总被引:2,自引:1,他引:2
自焙炭块除具有传统的焙烧炭块所具有的耐高温、高温强度大、不易粘渣铁、耐侵蚀等特性外,能够利用烘炉和高炉生产过程的热量逐步培烧成坚实、致密近于无缝的整体炉衬。第六、七代自焙炭块主要技术指标己优于国产传统的焙烧炭块,多数性能指标已达到或接近国际上80年代大型高炉用炭块的质量水平。自焙炭块及自焙炭块炉衬技术是中、小高炉经济可行、安全可靠的长寿炉衬技术。在此基础上研究、开发的半石墨化自焙炭块—陶瓷砌体复合炉衬技术在鞍钢7号(2580m~3)、4号(1002m~3)和太钢3号(1200m~3)高炉中应用已初见成效。 相似文献
4.
1 炉衬结构及其特点 安钢2号高炉在1994年10月大修时,炉底、炉缸采用了自焙炭块—陶瓷砌体复合炉衬,炉底采用了可调式工业水冷却,并在炉底炉缸砖衬不同部位增设测温点,由于设计增加了死铁层厚度,故在施工中将原高炉耐 相似文献
5.
鞍钢4号高炉1992年大修时采用自焙炭块陶瓷砌体复合炉缸。开炉后12 ̄18个月自焙炭块完成自焙过程,炉缸形成的温度场,1150℃等温线均匀地分布在陶瓷砌体内或内侧,陶瓷砌体和炭砖接触处温度均匀且小于800℃,这些都有利于控制炭砖所受到的各种侵蚀,防止炉缸异常侵蚀和环形断裂。预计炉缸寿命可达8 ̄10年以上。 相似文献
6.
通过对3号高炉(620m~3)1987年大修和1991年中修破损调查,对比在炉缸工作了6年的自培炭块(第二代产品)和在炉缸仅工作4年的粘土砖内衬的侵蚀情况。说明自焙炭块比硅酸铝质的耐火砖具有耐高温、高温强度高、抗渣铁侵蚀能力强、导热性和抗碱性较好等优点,是中、小型高炉较理想的炉衬材料。 相似文献
7.
为适应高炉强化冶炼后炉缸、炉底长寿需要,自1987年以来,济钢6座300~350m~3高炉相继采用了自焙炭块砌筑炉底、炉缸。本文简介设计、施工及生产概况。重点介绍了1号高炉生产4年后中修时调查炉缸(底侵蚀情况。实践证明,自焙炭块是一种优质长寿炉衬材料,在强化冶炼的条件下,高炉寿命预计可达8~10年。 相似文献
8.
9.
10.
11.
12.
安钢300m^3高炉从1994年10月2日高炉开始应用自焙炭块--陶瓷砌体复合炉衬技术和水冷炉底,到1998年底已推广到5座300m^3高炉。经过几年来的生产实践证明,这种复合炉衬可使大中修投产后的高炉快速达产和进入高产期,并能满足超强化冶炼和长寿的需要。 相似文献
13.
鞍钢7号高炉自焙炭块—陶瓷砌体复合炉缸的生产实践 总被引:1,自引:0,他引:1
鞍钢7号高炉在1992年4月大修中首次在大型高炉上采用自焙炭块—陶瓷砌体复合炉缸技术,经过近两年的生产实践和炉缸各测温点的温度显示证明,自焙炭块——陶瓷砌体复合炉缸能够维持较高的炉缸温度,满足高炉强化冶炼和长寿需要,是一项具有广阔前景的新炉衬技术。 相似文献
14.
安钢炼铁厂2^#高炉从1994年采用自焙炭块陶瓷砌体复合炉」衬后,经过5年6个月的强化冶炼,单位炉容铁量达到5163t/m^3。作者介绍了该炉使用陶瓷杯技术的情况,并对其侵蚀状况进行了分析。 相似文献
15.
本钢1#高炉炉底、炉缸采用“半石墨化自焙炭块-刚玉莫来石陶瓷砌体复合炉衬”技术及风冷炉底。该炉衬结构具有长寿、节能、造价低、施工方便、施工工期短等优点。本文论述了该炉衬的先进性和可靠性,及所用耐火材料的优良性能。 相似文献
16.
中小高炉采用自焙碳块炉底,炉缸的实践表明,自焙碳块能利用高炉烘炉和生产过程中热量逐步焙烧成坚实,致密,近于无缝的整体,消除了温差应力形成的“环状断裂”地碳块炉衬的破坏,在此基础上开发的“半石墨化自焙碳块陶瓷砌体复合炉衬技术”应用于鞍钢,太钢等大中型高炉,这种复合炉衬具有的投资省,施工简便等优点。 相似文献
17.
1 概况 韶钢老系统高炉均采用高铝砖炉衬,一代炉役中不时出现炉缸水温差超标、炉底温度超过700℃警界线的情况,虽采用了外部强化冷却、钒钛矿护炉等措施,但炉缸烧穿的危险却时时存在。从韶钢1、2、3号高炉停炉来看,炉缸侵蚀已经相当严重,尤其是3号高 相似文献
18.
19.
20.