首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Ertan Alptekin 《Fuel》2009,88(1):75-80
Characterizing of the fuel properties of diesel fuels, alternative fuels and their blends can assist the researchers who work on alternative fuels for diesel engines. Therefore, in this study, methyl esters were produced from five edible vegetable oils (sunflower, soybean, canola, corn and cottonseed) and blended with two different diesel fuels at 2%, 5%, 10%, 20%, 50% and 75% on a volume basis to characterize the key fuel properties of the blends such as density, viscosity, pour point, distillation temperatures and flash point. The results showed that the fuel properties of the blends were very close to those of diesel fuels at low concentrations upto 20% of methyl esters.  相似文献   

2.
Jo-Han Ng  Suyin Gan 《Fuel》2011,90(8):2700-2709
In this two-phase experimental programme, key effects of different biodiesel fuels and their blends on engine-out responses of a light-duty diesel engine were investigated. Here, coconut methyl ester (CME), palm methyl ester (PME) and soybean methyl ester (SME) were tested to represent the wide spectrum of degree of saturations in the fatty acid composition. Fossil diesel which served as the blending component was used as the baseline fuel for benchmarking purposes. Phase I examined how engine speed and load affect patterns of variation in tailpipe emissions and engine performance parameters for the test fuels. Here, the trends in engine-out responses across the operational speed-load map for all the tested biodiesel fuels were similar and consistent throughout. However, there were marked differences in the levels of equivalence ratio and specific fuel consumption, as well as exhaust concentrations of CO, UHC and smoke opacity. This is mainly due to differences in fuel properties, especially fuel-bound oxygen content, density and impurity level. Phase II appraised the performance of 31 different fuel blend combinations of fossil diesel blended with CME, PME or SME at 10 vol.% interval under a steady-state test cycle. The use of biodiesel fuels with low to moderate degree of unsaturation was found to conclusively reduce regulated emission species of UHC, NO and smoke opacity levels by up to 41.7%, 5.4% and 61.3%, respectively. This is in contrast to the performance of the highly unsaturated SME, where CO, UHC, NO and smoke opacity levels are higher in relation to that of fossil diesel. Simultaneous NO-smoke reduction can be achieved through the introduction of at least 1 vol.% of PME or 50 vol.% of CME into diesel fuel, although minor trade-off in the higher specific fuel consumption is observed.  相似文献   

3.
Biodiesel is an alternative fuel for diesel engines that consists of the monoalkyl esters of vegetable oils or animal fats. Currently, most biodiesel consists of methyl esters, which have poor cold-flow properties. Methyl esters of soybean oil will crystallize and plug fuel filters and lines at about 0°C. However, isopropyl esters have better cold-flow properties than methyl esters. This paper describes the production of isopropyl esters and their evaluation in a diesel engine. The effects of the alcohol amount, the catalyst amount, and two different catalysts on producing quality biodiesel were studied. Both sodium isopropoxide and potassium isopropoxide were found to be suitable for use in the transesterification process. A 20∶1 alcohol/TG molar ratio and a catalyst amount equal to 1% by weight (based on the TG amount) of sodium metal was the most cost-effective way to produce biodiesel fuel. The emissions from a diesel engine running on isopropyl esters made from soybean oil and yellow grease were investigated by comparing them with No. 2 diesel fuel and methyl esters. For nitrogen oxide emission, the difference between the biodiesel produced from soybean oil and yellow grease was greater than the difference between the methyl and isopropyl esters of both feedstocks. The other emissions from using isopropyl esters were about 50% lower in hydrocarbons, 10–20% lower in carbon monoxide, and 40% lower in smoke number when compared with No. 2 diesel fuel.  相似文献   

4.
Bryan R. Moser 《Fuel》2012,92(1):231-238
Refined hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their lipid production potentials (780–1780 L ha?1 yr?1) and suitability for marginal lands. Methyl oleate was the principal constituent identified in hazelnut (HME; 76.9%) and peanut (PME; 78.2%) oil methyl esters. Walnut oil methyl esters (WME) were comprised primarily of methyl esters of linoleic (60.7%), oleic (15.1%) and linolenic (12.8%) acids. PME exhibited excellent oxidative stability (IP 21.1 h; EN 14112) but poor cold flow properties (CP 17.8 °C) due to its comparatively high content of very-long chain fatty esters. WME provided low derived cetane number and oxidative stability (IP 2.9 h) data as a result of its high percentage of polyunsaturated fatty esters. HME yielded a satisfactory balance between all fuel properties when compared to the biodiesel standards ASTM D6751 and EN 14214 due to its high content of monounsaturated fatty esters. Also explored were the properties of blends of HME, PME and WME in ultra-low sulfur (<15 ppm) diesel (ULSD) fuel and comparison to petrodiesel standards ASTM D975, D7467 and EN 590. With increasing content of biodiesel, the oxidative stability, cold flow properties and calorific value of ULSD was negatively affected, whereas lubricity was markedly improved. Kinematic viscosity, specific gravity and surface tension were impacted to lesser extents by addition of biodiesel to ULSD. In summary, HME, PME and WME are suitable based on their fuel properties as biodiesel fuels and blend components in ULSD.  相似文献   

5.
The low-temperature properties of mono-alkyl esters derived from tallow and recycled greases were determined for neat esters and 20% ester blends in No. 2 low-sulfur diesel fuel. Properties studied included cloud point, pour point, cold filter plugging point, low-temperature flow test, crystallization onset temperature, and kinematic viscosity. Compositional properties of the alkyl esters determined included water, residual free fatty acids, and free glycerol content. In general, the secondary alkyl esters of tallow showed significantly improved cold-temperature properties over the normal tallow alkyl ester derivatives. The low-temperature flow test did not show a 1:1 correlation with cloud point as previously observed with methyl soyate and methyl tallowate. For the homologous series methyl to n-butyl tallowate, ethyl tallowate had the best broad-spectrum low-temperature properties, both neat and when blended in diesel fuel. For the greases studied, both the normal and branched alkyl ester derivatives showed improved properties over corresponding tallow esters, especially with neat esters.  相似文献   

6.
To reduce the tendency of biodiesel to crystallize at low temperatures, branched-chain alcohols were used to esterify various fats and oils, and the crystallization properties of the branched esters were compared with those of methyl esters by using differential scanning calorimetry (DSC), cloud point, and pour point. Compared with the methyl esters that are commonly used in biodiesel, branched-chain esters greatly reduced the crystallization onset temperature (TCO) of neat esters and their corresponding ester diesel fuel blends. Isopropyl and 2-butyl esters of normal (∼10 wt% palmitate) soybean oil (SBO) crystallized 7–11 and 12–14°C lower, respectively, than the corresponding methyl esters. The benefit of the branched-chain esters in lowering TCO increased when the esters were blended with diesel fuel. Esters made from a low-palmitate (3.8%) SBO crystallized 5–6°C lower than those of normal SBO. Isopropyl esters of lard and tallow had TCO values similar to that of methyl esters of SBO. DSC provided an accurate means of monitoring crystallization, and the DSC results correlated with cloud and pour point measurements.  相似文献   

7.
The aims of the present study were to evaluate the cold temperature behavior of methyl esters of vegetable and animal origin and of their mixtures with fossil diesel fuel, as well as to investigate the effectiveness of different depressants. Various blends of rapeseed oil methyl esters, linseed oil methyl esters, pork lard methyl esters and fossil diesel fuel were prepared, and both cloud point and cold filter plugging point (CFPP) were analyzed. It was found that mixtures with CFPP values of –5 °C and lower may contain up to 25% of pork lard methyl esters; whereas the ratio of summer fossil diesel fuel and rapeseed oil methyl esters may vary over a wide range, i.e. such mixtures can be used in a diesel engine in the summer. In the transitory periods it is possible to use up to 20% animal and vegetable ester blends (3 : 7) with winter fossil diesel, whereas only up to 5% of esters can be added to the fuel used in winter. In order to improve the cold properties of rapeseed oil, pork lard and linseed oil methyl ester mixtures, various additives were tested. Depressant Viscoplex 10–35 with an optimal dose of 5000 mg/kg was found to be the most effective.  相似文献   

8.
To investigate the combustion characteristics of palm methyl ester (PME) as an alternative fuel for gas turbines, combustion experiments at atmospheric pressure using high-temperature air (673 K) were performed. Chemical equilibrium calculations and investigations of fuel atomizing characteristics using a laser diffraction spray analyzer (LDSA) were also conducted. The results show that combustion characteristics of PME are similar to those of diesel fuel. Furthermore, it is indicated that NOx emissions can be reduced by using PME instead of diesel fuel for gas turbines.  相似文献   

9.
The biodiesel that is considered as a possible substitute or extender of conventional automotive diesel fuel is commonly composed of fatty acid methyl esters that are prepared from the glycerides in vegetable oils by transesterification with methanol. This form of biodiesel is compatible with diesel fuel but offers no improvement in its ignition quality. This work describes the results of a series of experiments aimed at assessing other common fatty acid derivatives that could provide the desired biofuel component and, at the same time, improve the performance of the fuel. It was found that tertiary fatty amines and amides are significantly more effective than methyl esters in enhancing the ignition quality of the finished diesel fuel without having any negative effect on its cold flow properties.  相似文献   

10.
P.K. Sahoo  M.K.G. Babu  S.N. Naik 《Fuel》2007,86(3):448-454
Non-edible filtered high viscous (72 cSt at 40 °C) and high acid value (44 mg KOH/gm) polanga (Calophyllum inophyllum L.) oil based mono esters (biodiesel) produced by triple stage transesterification process and blended with high speed diesel (HSD) were tested for their use as a substitute fuel of diesel in a single cylinder diesel engine. HSD and polanga oil methyl ester (POME) fuel blends (20%, 40%, 60%, 80%, and 100%) were used for conducting the short-term engine performance tests at varying loads (0%, 20%, 40%, 60%, 80%, and 100%). Tests were carried out over entire range of engine operation at varying conditions of speed and load. The brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) were calculated from the recorded data. The engine performance parameters such as fuel consumption, thermal efficiency, exhaust gas temperature and exhaust emissions (CO, CO2, HC, NOx, and O2) were recorded. The optimum engine operating condition based on lower brake specific fuel consumption and higher brake thermal efficiency was observed at 100% load for neat biodiesel. From emission point of view the neat POME was found to be the best fuel as it showed lesser exhaust emission as compared to HSD.  相似文献   

11.
One of the positive features of biofuel concerning environmental protection is its high biodegradability. Fuel is considered to be biodegradable if not less than 90% of it degrades within 21 days. The aim of this work was to determine the biodegradability of various kinds of fatty acid methyl esters and their mixtures with fossil diesel fuel in natural environments. It was determined that fatty acid methyl esters meet the requirements for biodegradability set by the EU. Of rapeseed oil fatty acid methyl esters (RME), 91.2% degraded within 21 days, compared to 94.2% of rapeseed oil fatty acid ethyl esters, 98.3% of linseed oil fatty acid methyl esters (LSME), 90% of tallow fatty acid methyl esters, and 92.5% of pork lard fatty acid methyl esters (LME), while the amount of degraded fossil diesel fuel reached only 57.3%. The biodegradability of multi‐component biofuels containing RME, LSME and LME is similar; the best is of a mixture of 70% RME, 6% LSME and 24% LME. It was determined that more than 90% of multi‐component biofuel and fossil diesel fuel mixtures degrade within 21 days when they contain 35% and more of multi‐component biofuel.  相似文献   

12.
The cetane number, a widely used diesel fuel quality parameter related to the ignition delay time (and combustion quality) of a fuel, has been applied to alternative diesel fuels such as biodiesel and its components. In this work, the cetane numbers of 29 samples of straight-chain and branched C1-C4 esters as well as 2-ethylhexyl esters of various common fatty acids were determined. The cetane numbers of these esters are not significantly affected by branching in the alcohol moiety. Therefore, branched esters, which improve the cold-flow properties of biodiesel, can be employed without greatly influencing ignition properties compared to the more common methyl esters. Unsaturation in the fatty acid chain was again the most significant factor causing lower cetane numbers. Cetane numbers were determined in an ignition quality tester (IQT) which is a newly developed, automated rapid method using only small amounts of material. The IQT is as applicable to biodiesel and its components as previous cetane-testing methods.  相似文献   

13.
Survey of seed oils for use as diesel fuels   总被引:2,自引:0,他引:2  
Fifty-one out of 364 plant seeds being surveyed had fatty acid contents greater than 15% (dry weight), and their methyl esters had cetane indices higher than 50. Rambutan seed was an exception, with a lipid content of only 14.7%, but a high cetane index (67.1); thus, it was included in this report. Twenty seed oil methyl esters had cetane indices greater than 60. Three seed oils from the Sapindaceae family not only had high cetane indices but also contained long-chain fatty acids of 20 carbon atoms. Gross heats of combustion of the fatty acid methyl esters were slightly higher than those of neat oil, ranging from 38.2 to 40.8 j/g, whereas the heating values of the oils ranged from 37.4 to 40.5 j/g. Thus, these plant seed oils have great potential for development as diesel fuel or diesel fuel extender.  相似文献   

14.
《Fuel》2006,85(7-8):923-928
The objective of this work is to understand the impact of biodiesel chemical structure, specifically fatty acid composition on particulate matter formation, particularly on the retention of hydrocarbons by soot due to the scrubbing effect and absorption processes.A typical diesel fuel supplied in petrol stations, two biofuels composed of methyl esters from the transesterification process of waste oils with different origins and some blends of biofuels with the reference fuel were tested in a commercial direct injection engine reproducing five modes of the European transient urban/extraurban certification cycle.The values of parameters related to the scrubbing effect and the absorption process were evaluated and fitted using neural networks (NNs). Simulation from NNs equations proves that in the case of tested fuels, the amount of palmitic acid methyl ester (PME) is the main factor affecting the amount of soluble material retained due to scrubbing. PME produces a lower amount of particulates, which reduces the agglomeration process and increases their specific surface. It is also proved that sulphur in sulphates (well known to be responsible for the scrubbing effect) must mainly come from the oil lube since the use of biofuels and their mixtures eliminates or significantly reduces sulphur concentration in the fuel, respectively. Condensation onto the particles due to inadequate vaporization and significant unburned biofuel must also be considered.The absorption process during particle formation was found to be negligible when biofuels were tested.  相似文献   

15.
Non-edible jatropha (Jatropha curcas), karanja (Pongamia pinnata) and polanga (Calophyllum inophyllum) oil based methyl esters were produced and blended with conventional diesel having sulphur content less than 10 mg/kg. Ten fuel blends (Diesel, B20, B50 and B100) were tested for their use as substitute fuel for a water-cooled three cylinder tractor engine. Test data were generated under full/part throttle position for different engine speeds (1200, 1800 and 2200 rev/min). Change in exhaust emissions (Smoke, CO, HC, NOx, and PM) were also analyzed for determining the optimum test fuel at various operating conditions. The maximum increase in power is observed for 50% jatropha biodiesel and diesel blend at rated speed. Brake specific fuel consumptions for all the biodiesel blends with diesel increases with blends and decreases with speed. There is a reduction in smoke for all the biodiesel and their blends when compared with diesel. Smoke emission reduces with blends and speeds during full throttle performance test.  相似文献   

16.
The effects of using blends of methyl and isopropyl esters of soybean oil with No. 2 diesel fuel were studied at several steady-state operating conditions in a four-cylinder turbocharged diesel engine. Fuel blends that contained 20, 50, and 70% methyl soyate and 20 and 50% isopropyl soyate were tested. Fuel properties, such as cetane number, also were investigated. Both methyl and isopropyl esters provided significant reductions in particulate emissions compared with No. 2 diesel fuel. A blend of 50% methyl ester and 50% No. 2 diesel fuel provided a reduction of 37% in the carbon portion of the particulates and 25% in the total particulates. The 50% blend of isopropyl ester and 50% No. 2 diesel fuel gave a 55% reduction in carbon and a 28% reduction in total particulate emissions. Emissions of carbon monoxide and unburned hydrocarbons also were reduced significantly. Oxides of nitrogen increased by 12%.  相似文献   

17.
Storage stability is an important aspect in the commercialization of biodiesel. Due to the chemical structure of methyl ester, long-term storage may lead to the degradation of fuel properties that can make it difficult to meet the EN 14214 Standard.This paper examines the degradation of several biofuels (sunflower methyl esters, used cooking oil methyl esters and blends with commercial diesel) under different storage conditions over a 6-month period. The storage conditions simulated real-life conditions by using similar temperatures to those found in commercial tanks, with little air turnover and in the absence of light. Extreme temperature conditions were also studied to determine if this variable has an effect on storage stability. Opaque glass or stainless steel storage containers were used to check the interaction between metal and biofuel.The results show that temperature plays an important role in the degradation of methyl esters. On the other hand, stainless steel was found to be a suitable material for the commercial storage tanks as the effect of this material on stability was almost negligible. The blends with commercial diesel performed better in long-term storage. This was probably due to the effect of the ester dilution and the presence of additives in commercial diesel.  相似文献   

18.
Biodiesel, defined as the alkyl esters (usually methyl esters) of vegetable oils, is miscible with conventional diesel fuel at all blend levels. Until the present time, no rapid and reliable analytical method has existed for determining the blend level of biodiesel in conventional diesel fuel. In the present work, near-infrared (NIR) and nuclear magnetic resonance (NMR) spectroscopies were used to determine the blend level of biodiesel in conventional diesel fuel. Several regions in the NIR region (around 6005 cm−1 and 4800–4600 cm−1) are suitable for this purpose. The method is rapid and easy to use, and does not require any hardware changes when using the same instrument for monitoring the biodiesel-producing transesterification reaction and determining biodiesel fuel quality. In 1H NMR spectroscopy, the integration values of the peaks of the methyl ester moiety and the aliphatic hydrocarbon protons in biodiesel and conventional diesel fuel were used for determining blend levels. The results of NIR and NMR blend level determinations are in good agreement.  相似文献   

19.
Vegetable oil esters, particularly methyl esters, are being explored and used as alternative diesel fuel (biodiesel). The transesterification reaction which yields the methyl esters can be monitored for completion by near-infrared (NIR) spectroscopy using a fiber-optic probe. Although the NIR method is less sensitive than gas chromatography (GC) for quantifying minor components, by correlation with existing GC or other analytical data, biodiesel fuel quality can be assessed through the NIR method. The NIR method is easier and faster to use than GC. Presented in part at the 89th AOCS Annual Meeting & Expo, Chicago, IL, May 1998.  相似文献   

20.
Biodiesel is a renewable, domestically produced fuel that has been shown to reduce particulate, hydrocarbon, and carbon monoxide emissions from diesel engines. Under some conditions, however, biodiesel produced from certain feedstocks has been shown to cause an increase in nitrogen oxides (NOx). This is of special concern in urban areas that are subject to strict environmental regulations. Although soy-based biodiesel may increase the emission of nitrogen oxides, it is the most easily accessible in North America. We investigated two routes to reformulate soy-based biodiesel in an effort to reduce nitrogen oxide emissions. In one of these, soy-oil methyl esters were modified by conversion of a proportion of the cis bonds in the fatty acid chains of its methyl esters to their trans isomers. In the other approach, polyol derivatives of soybean oil were transesterified to form soy methyl polyol fatty acid esters. The NOx emissions of these modified biodiesels were then examined, using a Yanmar L100 single cylinder, four stroke, naturally aspirated, air cooled, direct injection diesel engine. Using either isomerized methyl oleate or isomerized soy biodiesel, at 20% blend level in petroleum diesel (‘B20’), nitrogen oxide emissions were elevated by between 1.5 and 3 percentage points relative to the combustion of a B20 blend of commercial biodiesel. Nitrogen oxide emissions were reduced in proportion to blend level during the combustion of polyol biodiesel, with a 20% blend in petrodiesel resulting in a reduction of about 4.5 percentage points relative to the emissions of a comparable blend of commercial soy biodiesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号