首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanoparticles (NPs) can self‐assemble into complex, organized superstructures on patterned surfaces through fluid‐mediated interactions. However, the detailed mechanisms for such NP assemblies are largely unknown. Here, using in situ transmission electron microscopy, the stepwise self‐assembly dynamics of hydrophobic gold NPs into long filaments formed on the surfaces of water‐filled patterned nanochannel templates is observed. First, the formation of a meniscus between the nanochannel walls, during the slow drying of water, causes accumulation of the NPs in the middle of the nanochannels. Second, owing to the strong van der Waals attraction between the NP ligands, the NPs condense into filaments along the centers of the nanochannels. Filaments with highly fluctuating longitudinal NP densities are also observed to fragment into separated structures. Understanding the intermediate stages of fluid‐mediated NP self‐assembly on patterned surfaces will have important implications for the controlled formation of templated NP assemblies with numerous applications.  相似文献   

2.
Chiral nanoparticle (NP) superstructures, in which discrete NPs are assembled into chiral architectures, represent an exciting and growing class of nanomaterials. Their enantiospecific properties make them promising candidates for a variety of potential applications. Helical NP superstructures are a rapidly expanding subclass of chiral nanomaterials in which NPs are arranged in three dimensions about a screw axis. Their intrinsic asymmetry gives rise to a variety of interesting properties, including plasmonic chiroptical activity in the visible spectrum, and they hold immense promise as chiroptical sensors and as components of optical metamaterials. Herein, a concise history of the foundational conceptual advances that helped define the field of chiral nanomaterials is provided, and some of the major achievements in the development of helical nanomaterials are highlighted. Next, the key methodologies employed to construct these materials are discussed, and specific merits that are offered by each assembly methodology are identified, as well as their potential disadvantages. Finally, some specific examples of the emerging applications of these materials are discussed and some areas of future development and research focus are proposed.  相似文献   

3.
Controllable integration of inorganic nanoparticles (NPs) and metal–organic frameworks (MOFs) is leading to the creation of many new multifunctional materials. In this Research News, an emerging type of core–shell nanostructure, in which the inorganic NP cores are encapsulated by the MOF shells, is briefly introduced. Unique functions originating from the property synergies of different types of inorganic NP cores and MOF shells are highlighted, and insight into their future development is suggested. It is highly expected that this Research News could arouse research enthusiasm on such NP@MOF core–shell nanostructures, which have great application potential in devices, energy, the environment, and medicine.  相似文献   

4.
2D mesoporous materials fabricated via the assembly of nanoparticles (NPs) not only possess the unique properties of nanoscale building blocks but also manifest additional collective properties due to the interactions between NPs. In this work, reported is a facile and designable way to prepare free‐standing 2D mesoporous gold (Au) superstructures with a honeycomb‐like configuration. During the fabrication process, Au NPs with an average diameter of 5.0 nm are assembled into a superlattice film on a diethylene glycol substrate. Then, a subsequent thermal treatment at 180 °C induces NP attachment, forming the honeycomb‐like ordered mesoporous Au superstructures. Each individual NP connects with three neighboring NPs in the adjacent layer to form a tetrahedron‐based framework. Mesopores confined in the superstructure have a uniform size of 3.5 nm and are arranged in an ordered hexagonal array. The metallic bonding between Au NPs increases the structural stability of architected superstructures, allowing them to be easily transferred to various substrates. In addition, electron energy‐loss spectroscopy experiments and 3D finite‐difference time‐domain simulations reveal that electric field enhancement occurs at the confined mesopores when the superstructures are excited by light, showing their potential in nano‐plasmonic applications.  相似文献   

5.
Routine exposure to inorganic nanoparticles (NPs) that are incorporated into consumer products such as foods/drinks, packaging materials, pharmaceuticals, and personal care products (e.g. cosmetics, sunscreens, shampoos) occurs on a daily basis. The standard everyday use of these products facilitates interactions between the incorporated inorganic NPs, mammalian tissues (e.g. skin, gastrointestinal tract, oral cavity), and the community of microbes that resides on these tissues. Changes to the microbiome have been linked to the initiation/ progression of many diseases and there is a growing interest focused on understanding how inorganic NPs can initiate these changes. As these mechanisms are revealed and defined, it may be possible to rationally design microbiotamodulating therapies based on inorganic NPs. In this article, we will: (i) provide a background on inorganic NPs that are commonly found in consumer products such as those that incorporate titanium, zinc, silver, silica, or iron, (ii) discuss how NP properties, microbiota composition, and the physiological microenvironment can mediate the effects that inorganic NPs have on the microbiota, and (iii) highlight opportunities for inorganic NP therapies that are designed to interact with, and navigate, the microbiome.  相似文献   

6.
DNA‐mediated assembly of core–satellite structures composed of Zr(IV)‐based porphyrinic metal‐organic framework (MOF) and NaYF4,Yb,Er upconverting nanoparticles (UCNPs) for photodynamic therapy (PDT) is reported. MOF NPs generate singlet oxygen (1O2) upon photoirradiation with visible light without the need for additional small molecule, diffusional photosensitizers such as porphyrins. Using DNA as a templating agent, well‐defined MOF–UCNP clusters are produced where UCNPs are spatially organized around a centrally located MOF NP. Under NIR irradiation, visible light emitted from the UCNPs is absorbed by the core MOF NP to produce 1O2 at significantly greater amounts than what can be produced from simply mixing UCNPs and MOF NPs. The MOF–UCNP core–satellite superstructures also induce strong cell cytotoxicity against cancer cells, which are further enhanced by attaching epidermal growth factor receptor targeting affibodies to the PDT clusters, highlighting their promise as theranostic photodynamic agents.  相似文献   

7.
The poor adhesion of gold nanoparticles (NPs) to glass has been a known obstacle to studies and applications of NP-based systems, such as glass/Au-NP optical devices. Here we present a simple scheme for obtaining stable localized surface plasmon resonance (LSPR) transducers based on Au NP films immobilized on silanized glass and annealed. The procedure includes high-temperature annealing of the Au NP film, leading to partial embedding in the glass substrate and stabilization of the morphology and optical properties. The method is demonstrated using citrate-stabilized Au NPs, 20 and 63 nm mean diameter, immobilized electrostatically on glass microscope cover slides precoated with an aminosilane monolayer. Partial thermal embedding of the Au NPs in the glass occurs at temperatures in the vicinity of the glass transition temperature of the substrate. Upon annealing in air the Au NPs gradually settle into the glass and become encircled by a glass rim. In situ transmission UV-vis spectroscopy carried out during the annealing in a specially designed optical oven shows three regions: The most pronounced change of the surface plasmon (SP) band shape occurs in the first ca. 15 min of annealing; this is followed by a blue-shift of the SP band maximum (up to ca. 5 h), after which a steady red-shift of the SP band is observed (up to ca. 70 h, when the experiment was terminated). The development of the SP extinction spectrum was correlated to changes in the system structure, including thermal modification of the NP film morphology and embedding in the glass. The partially embedded Au NP films pass successfully the adhesive-tape test, while their morphology and optical response are stable toward immersion in solvents, drying, and thiol self-assembly. The enhanced adhesion is attributed to the metal NP embedding and rim formation. The stabilized NP films display a refractive index sensitivity (RIS) of 34-48 nm/RIU and 0.1-0.4 abs.u./RIU in SP band shift and extinction change, respectively. The RIS can be improved significantly by electroless deposition of Au on the embedded NPs, while the system stability is maintained. The method presented provides a simple route to obtaining stable Au NP film transducers.  相似文献   

8.
In situ fabrication of macroscale ordered monolayers of nanoparticles (NPs) on targeted substrates is highly desirable for precision electronic and optical devices, while it remains a great challenge. In this study, a solution is provided to address this challenge by developing a colloidal ink formulation and employing the direct-ink-writing (DIW) technique, where on-demand delivery of ink at a targeted location and directional evaporation with controllable rate are leveraged to precisely guide the deposition of polystyrene-grafted gold NPs (Au@PS NPs) into a macroscale monolayer with an ordered Au NP array embedded in a PS thin film. A 2D steady-state diffusion-controlled evaporation model, which explains the parameter dependence of the experimental results and gives semiquantitative agreement with the experimental evaporation kinetics is proposed. The ordered monolayer is used as both nanocrystal floating gates and the tunneling layer for nonvolatile memory devices. It shows significantly enhanced performance compared with a disordered NP film prepared by spin coating. This approach allows for fine control of NP self-assembly to print macroscaleordered monolayers directly onto substrates, which has great promise for application in broad fields, including microelectronic and photoelectronic devices, sensors, and functional coatings.  相似文献   

9.
Nanoparticle (NP) assemblies are of considerable interest for both fundamental research and applications, since they provide direct bridges between nanometer‐scale objects and the macroscale world. Unlike two‐dimensional or three‐dimensional NP assemblies, which have been extensively studied and reviewed, reports on one‐dimensional (1D) NP assemblies are rather rare, even though these assemblies are likely to play critical roles in the improvement of the efficiencies of various electronic, optoelectronic, magnetic, and other devices based on single NPs or their composites. Additionally, 1D assemblies of NPs, i.e., chains, can significantly help in the understanding of a number of biological processes and fundamental quantum mechanics of nanometer‐scale systems. The difficulties are very evident when one wants to realize anisotropic 1D assemblies from presumably isotropic, zero‐dimensional NPs. In this context, the authors present a systemic review of current research on 1D NP assemblies. Their preparation methods are classified and novel characteristics of NP chains, such as collective properties and directional transfer of photons, electrons, spins, etc., are elucidated. Current problems underlying the fundamental research and practical applications of 1D NP assemblies are also addressed.  相似文献   

10.
The success of nanoparticle‐based devices will need reliable fabrication methods for well‐defined, defect‐free self‐assembled structures of nanoparticles (NPs). NP self‐assembly is a process governed by an interplay between many inter‐particle interactions, such as core–core van der Waals and dipolar attractions, as well as interactions of the ligand shells, which, when generating an interpenetration, is called interdigitation. The result of this delicate balance between strong interactions is often kinetically hindered; hence, the reaching and recognition of an equilibrium structure becomes challenging. Here, a systematic study is presented that aims at approaching equilibrium 2D NP assemblies (i.e., NP monolayers) based on cyclic compression and relaxation in Langmuir NP monolayers. Cyclic isotherm curves are taken at various surface pressures together with a complete characterization of the corresponding structural evolution of the NP structures. Results are obtained through the analysis of the images, using in‐house software that enables the analysis and visualization of the degree of ligand interdigitation as well as the NPs short‐ and long‐range order. It is found that the initial structures obtained through Langmuir assembly can be quite far from equilibrium, mostly due to inhomogeneities in the ligand shell interdigitation and interaction. A few compression cycles render the whole assembly more homogeneous and significantly increases the long‐range order. Finally, this structural analysis shows that the ligand shell can act a buffer to the size polydispersity in the particle cores.  相似文献   

11.
Hleb EY  Lapotko DO 《Nanotechnology》2008,19(35):355702
Photothermal (PT) efficacy and damage thresholds of gold nanoparticles (NP)-spheres, rods and silica-gold shells-were experimentally studied during their excitation with nanosecond laser pulses at the fluence levels at and above the NP damage threshold. The maxima of PT efficacy of gold NPs with near-infrared (NIR) plasmon resonances (gold rods and shells) and the minima of their damage thresholds were found to be shifted from their plasmon resonance NIR wavelengths into non-resonant visible wavelengths. This suppression of PT efficacy of NIR plasmon resonances (bleaching) was found to be up to 18 times for the rods and up to 22 times for the shells. During laser-induced deterioration the NPs maintained their PT properties at least within 40-150?ns after exposure to laser pulses. PT properties of the gold NPs can be enhanced with the pulse train mode within the above time. The PT bubbles generated around superheated NPs were used as their optical markers and allowed us to quantify PT efficacy of plasmon resonance through the bubble parameters under the conditions when other methods of NP detection are not applicable.  相似文献   

12.
Perturbation of an arctic soil microbial community by metal nanoparticles   总被引:4,自引:0,他引:4  
Technological advances allowing routine nanoparticle (NP) manufacture have enabled their use in electronic equipment, foods, clothing and medical devices. Although some NPs have antibacterial activity, little is known about their environmental impact and there is no information on the influence of NPs on soil in the possibly vulnerable ecosystems of polar regions. The potential toxicity of 0.066% silver, copper or silica NPs on a high latitude (>78°N) soil was determined using community level physiological profiles (CLPP), fatty acid methyl ester (FAME) assays and DNA analysis, including sequencing and denaturing gradient gel electrophoresis (DGGE). The results of these different investigations were amalgamated in order to develop a community toxicity indicator, which revealed that of the three NPs examined, silver NPs could be classified as highly toxic to these arctic consortia. Subsequent culture-based studies confirmed that one of the community-identified plant-associating bacteria, Bradyrhizobium canariense, appeared to have a marked sensitivity to silver NPs. Thus, NP contamination of arctic soils particularly by silver NPs is a concern and procedures for mitigation and remediation of such pollution should be a priority for investigation.  相似文献   

13.
Electrical and optical properties of the silver nanoparticles (Ag NPs) incorporated into the polyvinyl alcohol (PVA) matrices were investigated as a function of Ag NPs. The intensities of FT-Raman bands have a maximum corresponding to the Ag NP amount about 3.6 mg.. The PVA doped with different amounts of Ag NPs shows UV-Visible peaks, were red shifted by Ag NPs increase, while their intensities according well with the FT-Raman spectra. The UV-Visible spectra for the 3.6 mg Ag NPs doped in PVA presented a small red shift and band intensity decrease by increasing temperature.  相似文献   

14.
Layers of Au nanoparticles (NPs) were formed in films of yttria stabilized zirconia (YSZ) on fusedquartz substrates by layer-by-layer magnetron deposition with subsequent annealing. The obtained structures were studied by applying high-resolution transmission electron microscopy (TEM) to transverse sections and using optical absorption spectroscopy. TEM studies revealed the formation of Au NPs with a diameter of 2?3 nm concentrated in a thin layer within the YSZ film. The optical absorption spectra of the studied samples exhibited peaks of resonance plasmon absorption in Au NPs with a maximum wavelength of ~650 nm. The dependences of geometric and structural parameters of Au NP arrays (size, density, thickness of the Au NP layer, etc.) on the formation conditions were determined, and the regimes of fabrication of dense Au NP arrays that allow for collective plasmon excitations were identified.  相似文献   

15.
A fast, simple procedure is described for obtaining an assembly of silver sulfide nanoparticles (Ag(2)S NPs) on a glass substrate through reaction of a template of an assembled layer of silver nanoparticles (Ag NPs) with hydrogen sulfide (H(2)S) gas. The Ag NP template was prepared by assembling a monolayer of spherical Ag NPs (mean diameter of 7.4?nm) on a polyethylenimine-treated glass substrate. Exposure to pure H(2)S for 10?min converted the Ag NPs of the template to Ag(2)S NPs. The resulting Ag(2)S NP assembly, which retains the template nanostructure and particle distribution, was characterized by optical absorption spectroscopy, atomic force microscopy, transmission electron microscopy (TEM), scanning high resolution TEM, energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The Ag(2)S NPs have a crystal structure of monoclinic acanthite, and while they retained the spherical shape of the original Ag NPs, their mean particle size increased to 8.4?nm due to changes to the crystal structure when the Ag NPs are converted into Ag(2)S NPs. The measured optical absorption edge of the Ag(2)S NP assembly indicated an indirect interband transition with a band gap energy of 1.71?eV. The Ag(2)S NP assembly absorbed light with wavelengths below 725?nm, and the absorbance increased monotonically toward the UV region.  相似文献   

16.
In this study, monitoring of localized surface plasmon resonance (LSPR) optical characteristics and dispersion condition change for hydrogen peroxide using polyvinylpyrrolidone (PVP)-coated silver nanoparticles (NPs) was described. PVP-coated silver NPs exhibit the specific light absorption in visible region. Hence, using LSPR optical characteristics, several applications such as optoelectronics, food control and life science can be realized. In addition, by introducing hydrogen peroxide solution into the PVP-coated silver NP dispersion, LSPR optical characteristics were drastically changed. From these LSPR optical characteristic changes of PVP-coated silver NPs for hydrogen peroxide, in this study, observation of dispersion kinetics of PVP-coated silver NPs was carried out. As a result, aggregation which is attributed by the radical polymerization of PVP layer could be observed by introduction of hydrogen peroxide. In addition, silver cluster structure which is included in the PVP layer was stably contained in the aggregated PVP layer. From these optical characteristic change and dispersion kinetics, this PVP-coated silver NPs have great potential for application to biosensing applications as a color indicator.  相似文献   

17.
Since the advent of practical methods for achieving DNA metallization, the use of nucleic acids as templates for the synthesis of inorganic nanoparticles (NPs) has become an active area of study. It is now widely recognized that nucleic acids have the ability to control the growth and morphology of inorganic NPs. These biopolymers are particularly appealing as templating agents as their ease of synthesis in conjunction with the possibility of screening nucleotide composition, sequence and length, provides the means to modulate the physico-chemical properties of the resulting NPs. Several synthetic procedures leading to NPs with interesting photophysical properties as well as studies aimed at rationalizing the mechanism of nucleic acid-templated NP synthesis are now being reported. This progress article will outline the current understanding of the nucleic acid-templated process and provides an up to date reference in this nascent field.  相似文献   

18.
Nanoparticle (NP) determination has recently gained considerable interest since a growing number of engineered NPs are being used in commercial products. As a result, their potential to enter the environment and biological systems is increasing. In this study, we report on the development of a hyphenated analytical technique for the detection and characterization of metal-containing NPs, i.e., their metal mass fraction, size, and number concentration. Hydrodynamic chromatography (HDC), suitable for sizing NPs within the range of 5 to 300 nm, was coupled online to inductively coupled plasma mass spectrometry (ICPMS), providing for an extremely selective and sensitive analytical tool for the detection of NPs. However, a serious drawback when operating the ICPMS in its conventional mode is that it does not provide data regarding NP number concentrations and, thus, any information about the metal mass fraction of individual NPs. To address this limitation, we developed single particle (SP) ICPMS coupled online to HDC as an analytical approach suitable for simultaneously determining NP size, NP number concentration, and NP metal content. Gold (Au) NPs of various sizes were used as the model system. To achieve such characterization metrics, three calibrations were required and used to convert ICPMS signal spikes into NPs injected, NP retention time on the HDC column to NP size, and ions detected per signal spike or per NP to metal content in each NP. Two calibration experiments were required in order to make all three calibrations. Also, contour plots were constructed in order to provide for a convenient and most informative viewing of this data. An example of this novel analytical approach was demonstrated for the analysis of Au NPs that had been spiked into drinking water at the ng Au L(-1) level. The described technique gave limits of detection for 60 nm Au NPs of approximately 2.2 ng Au L(-1) or expressed in terms of NP number concentrations of 600 Au NPs mL(-1). These were obtained while the 60 nm NPs exhibited a retention time of 771 s at a mobile phase flow rate of 1 mL min(-1).  相似文献   

19.
We report dispersion solution composition dependence of the adsorption layer structure and the physical and optical properties of aqueous phase-synthesized semiconductor nanoparticles (NPs). We synthesized cysteine (Cys)-capped CdSe NPs with well-defined core structures, dispersed them in a series of aqueous solutions with different compositions, and then investigated their adsorption layer structure and physical and optical properties. Each CdSe NP consisted of a (CdSe)33 or (CdSe)34 magic-sized cluster (d - 1.45 nm) core, a ligand-Cys shell, and an adsorption layer. The dispersion solution composition strongly affected the adsorption layer structure of the CdSe NPs. The solution with a composition close to that of the as-prepared solution stabilized the physical and optical properties of the NPs. The solution with a composition different from that of the as-prepared solution, however, resulted in large changes in their adsorption layer structure and thus their physical and optical properties. The solution composed of neutral or weakly charged Cys and Cd-Cys complexes led to the adsorption layer with low charge density and that destabilized the NPs. The solution containing only neutral or weakly charged forms of Cys, without Cd-Cys complexes, was favorable to the formation of a thick adsorption layer with low charge density and that destabilized the NPs. The amount of adsorbed Cys in the adsorption layer depended on the dispersion solution composition. However, the amount of adsorbed Cd-Cys complexes in the adsorption layer was almost constant regardless of the dispersion solution composition.  相似文献   

20.
Localized surface plasmon resonance (LSPR) of Ag nanoparticles (NPs) with different shapes and disk-shaped Ag NP pairs with varying interparticle distance is studied using dark-field optical microscopy and spectroscopy (DFOMS). Disk-, square-, and triangular-shaped Ag NPs were fabricated on indium tin oxide-coated glass substrates by electron beam lithography. The LSPR spectra collected from single Ag NPs within 5×5 arrays using DFOMS exhibited pronounced redshifts as the NP shape changed from disk to square and to triangular. The shape-dependent experimental LSPR spectra are in good agreement with simulations using the discrete dipole approximation model, although there are small deviations in the peak wavelengths for square- and triangular-shaped NPs. The LSPR spectra of disk-shaped Ag NP pairs with varying interparticle distances were acquired from five different locations across the pair axis. It was clearly observed that the LSPR wavelength redshifts as the interparticle distance decreases, indicating a strong interaction when two Ag NPs are close to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号