首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical resistance tomography (ERT) is used to measure void fraction wave characteristics and to identify flow pattern in a bubble column reactor (0.24 m diameter, 2.75 m height). The effects of column pressure and superficial gas velocities for different sparger geometry and for different flow pattern have been investigated. The ERT sensor can distinguish the void fraction disturbances in different flow regimes with a good clarity. The holdup derived from ERT is in good agreement with the hold-up values measured by pressure transmitters. Different flow regimes have been identified based on void fraction properties and wall pressure fluctuations. The spectral analysis of ERT measurements yields quantitative information, such as a characteristic time and a characteristic frequency of void fraction waves, which are closely related to flow structure in the prevailing regime. The experimental observations are compared with the literature.  相似文献   

2.
A comprehensive analysis of the development of flow pattern in a bubble column reactor is presented here through extensive LDA measurements and CFD predictions. In the LDA measurements, the simultaneous measurements of 2D velocity-time data were carried out at several radial locations and many axial cross-sections of the column for two different spargers. The profiles of mean axial liquid velocity, fractional gas hold-up and bubble slip velocity showed excellent agreement between the predictions and the experimentally measured values. The experimental results showed that the mean tangential velocity varies systematically in the radial as well as along the axial co-ordinates. The turbulence parameters viz. turbulent kinetic energy, energy dissipation rate and eddy diffusivity were also analysed. The estimated values of local energy dissipation rate obtained using eddy isolation model were used for establishing the energy balance in the column. The experimental data were used for the estimation of normal and shear stress profiles. For the case of single point sparger, just above the sparger region, the bubble plume was seen to have a strong tangential component of motion thereby yielding higher gas hold-up slightly away from the centre. This visual observation was well captured in profiles of all the hydrodynamic parameters obtained from the experimental data. CFD simulations of the mean velocities, gas hold-up and turbulent kinetic energy compared well with the experimental results.  相似文献   

3.
The distribution of gas holdup, the rise velocity of gas bubble swarm and the Sauter mean bubble size are estimated with a small diameter laboratory scale bubble column using electrical resistance tomography (ERT). The theory of gas disengagement based on ERT methods has been developed for estimations of bubble size and bubble rise velocity. The gas holdups of large bubble swarm and small bubble swarm, the distribution of both bubble size are derived through the analysis of gas disengagement based on the differences of the rise velocity of bubble swarm at the cross-section imaged by electrical resistance tomography. Experimental results are in very good agreement with correlations and conventional estimation obtained using pressure transmitter methods. The proposed methodology can be also used as an analysis tool for quantifying and optimizing the performance of other types of complex reaction systems.  相似文献   

4.
The objective of this study was to develop a unified data-driven correlation for the overall gas hold-up for various gas-liquid systems using support vector regression (SVR)-based modeling technique. Over the years, researchers have amply quantified the hydrodynamics of bubble column reactors in terms of the overall gas hold-up. In this work, about 1810 experimental points were collected from 40 open sources spanning the years 1965-2007. The model for overall gas hold-up was established as a function of several parameters which include superficial gas velocity, superficial liquid velocity, gas density, molecular weight of gas, sparger type, sparger hole diameter, number of sparger holes, liquid viscosity, liquid density, liquid surface tension, operating temperature, operating pressure and column diameter of the gas-liquid system. For understanding the hold-up behavior, the data used for training the model was grouped into various gas-liquid systems viz., air-water, gas-aqueous viscous liquids, gas-organic liquids, gas-aqueous electrolyte solutions and gas-liquid systems operated over a wide range of pressure. A generalized model established using SVR was evaluated for its performance for various gas-liquid systems. Statistical analysis showed that the proposed generalized SVR-based correlation for overall gas hold-up has prediction accuracy of 97% with average absolute relative error (% AARE) of 12.11%. A comparison of this correlation with the selected system specific correlations in the literature showed that the developed SVR-based correlation significantly gives enhanced prediction of overall gas hold-up.  相似文献   

5.
CFD simulation of bubble columns incorporating population balance modeling   总被引:1,自引:0,他引:1  
A computational fluid dynamics (CFD)-code has been developed using finite volume method in Eulerian framework for the simulation of axisymmetric steady state flows in bubble columns. The population balance equation for bubble number density has been included in the CFD code. The fixed pivot method of Kumar and Ramkrishna [1996. On the solution of population balance equations by discretization—I. A fixed pivot technique. Chemical Engineering Science 51, 1311-1332] has been used to discretize the population balance equation. The turbulence in the liquid phase has been modeled by a k-ε model. The novel feature of the framework is that it includes the size-specific bubble velocities obtained by assuming mechanical equilibrium for each bubble and hence it is a generalized multi-fluid model. With appropriate closures for the drag and lift forces, it allows for different velocities for bubbles of different sizes and hence the proper spatial distributions of bubbles are predicted. Accordingly the proper distributions of gas hold-up, liquid circulation velocities and turbulence intensities in the column are predicted. A survey of the literature shows that the algebraic manipulations of either bubble coalescence or break-up rate were mainly guided by the need to obtain the equilibrium bubble size distributions in the column. The model of Prince and Blanch [1990. Bubble coalescence and break-up in air-sparged bubble columns. A.I.Ch.E. Journal 36, 1485-1499] is known to overpredict the bubble collision frequencies in bubble columns. It has been modified to incorporate the effect of gas phase dispersion number. The predictions of the model are in good agreement with the experimental data of Bhole et al. [2006. Laser Doppler anemometer measurements in bubble column: effect of sparger. Industrial & Engineering Chemistry Research 45, 9201-9207] obtained using Laser Doppler anemometry. Comparison of simulation results with the experimental measurements of Sanyal et al. [1999. Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors. Chemical Engineering Science 54, 5071-5083] and Olmos et al. [2001. Numerical simulation of multiphase flow in bubble column reactors: influence of bubble coalescence and breakup. Chemical Engineering Science 56, 6359-6365] also show a good agreement for liquid velocity and gas hold-up profiles.  相似文献   

6.
曳力模型对模拟鼓泡塔气含率的影响   总被引:6,自引:5,他引:1       下载免费PDF全文
吴宗应  杨宁 《化工学报》2010,61(11):2817-2822
引言 鼓泡塔由于其良好的传热、传质特性而被广泛用于化工、生物制药、冶金等领域.近年来,计算流体力学(CFD)越来越多地被应用于研究鼓泡塔内部复杂的流体力学状态.然而,如何合理地描述气液相间作用及湍流模型是CFD模拟能够准确复现鼓泡塔内复杂流动状态的关键和难点.  相似文献   

7.
通过二维和三维CFD-PBM耦合模型对空气-醋酸体系中流体力学参数进行数值模拟,采用表面张力修正曳力模型与聚并模型,考察了醋酸浓度对鼓泡塔内气含率、气泡大小分布及轴向液速等参数的影响,与差压法、光纤探针和电阻层析成像技术(ERT)测量的实验数据进行了对比,并讨论分析了气含率和气泡直径等流体力学参数的模拟结果。结果表明,醋酸浓度在70%~80%(质量分数)范围内平均气含率存在最大值,且平均气含率的预测值在±10%误差内,三维模拟结果和ERT实验值吻合较好,说明修正后的模型在不同浓度醋酸体系中具有较好的预测性。  相似文献   

8.
采用电导探针测定了冷态鼓泡塔中不同气速下的气泡直径及气含率的轴向分布,考察了分布板对鼓泡塔操作性能的影响.结果表明:随着开孔率的减小,从均匀鼓泡区到过渡区的转变提前;在均匀鼓泡区,开孔率对气泡直径影响较小;在过渡区,开孔率大的分布器形成的稳定气泡直径较小、气含率较大;分布板开孔直径越大,形成的初始气泡直径越大,但对轴向气泡直径分布的影响仅限于分布器区.包含分布器影响的气泡直径经验关联式为d/D=140.2Bo-0.5Ga-0.12Fr0.099(h/D)-0.15T-0.34(0.5 cm/s<ug<7 cm/s).  相似文献   

9.
An electrical resistance tomography (ERT) linear probe was used to measure gas hold-up in a two-phase (gas–liquid) and three phase (gas–solid–liquid) stirred-tank system equipped with a Rushton turbine. The ERT linear probe was chosen rather than the more commonly used ring cage geometry to achieve higher resolution in the axial direction as well as its potential for use on manufacturing plant. Gas-phase distribution was measured as a function of flow regime by varying both impeller speed and gas flow rate. Global and local gas hold-up values were calculated using ERT data by applying Maxwell's equation for conduction through heterogeneous media. The results were compared with correlations, hard-field tomography data, and computational fluid dynamic simulations available in the literature, showing good agreement. This study thus demonstrates the capability of ERT using a linear probe to offer, besides qualitative tomographic images, reliable quantitative data regarding phase distribution in gas–liquid systems.  相似文献   

10.
实验测定了不同操作条件下反应器内的压强脉动时序信号. 提出了一种求取鼓泡床中气含率的新方法,即根据压强脉动信号功率谱图上的主频确定小波主尺度,并对该尺度上的细节信号的间歇行为进行了分析;在局部间歇性分析(Local Intermittency Measurement, LIM)曲线上选取合适的阈值后,对不同径向位置上的局部气含率进行估计,进而得到反应器截面上的平均气含率值. 根据本工作的LIM分析方法计算得到的气含率与压降法实测气含率相一致,这也表明反应器内气泡是导致鼓泡流中压强脉动的主要因素.  相似文献   

11.
The hydrodynamic and mass transfer characteristics in countercurrent, cocurrent and liquid batch operations with various Newtonian liquids were studied experimentally using the same bubble column. Taking the effect of gas sparger geometries, operating variables and liquid properties into account, empirical correlations were obtained for the gas hold-up and the volumetric liquid-phase mass transfer coefficient.  相似文献   

12.
The hydrodynamic behavior of a bubble column has been studied for various Newtonian and non-Newtonian liquids (water, glycerol, carboxymethylcellulose and polyacrylamide solutions). The mixing time, the power consumption, the circulation time and the gas hold-up have been measured in a cylindrical column (diameter: 0.254 m, height: 0.9 m) for three air sparger plates with different numbers and distributions of 1 mm diameter orifices. It is shown that the mixing efficiency decreases as the viscosity or the shear-thinning and elastic properties of the liquid increase. The viscosity of the liquid has little influence on the gas hold-up which is, however, strongly affected by the sparger plate characteristics and increases as the liquid phase becomes more elastic. A model for predicting gas hold-up is proposed.  相似文献   

13.
It was established by using double impulse method that the transmission time of an ultrasonic wave, which passes near a bubble, is either shorter or longer than that in the liquid system. This is attributed to the fluid vortex originated by the bubble rising ahead of the wave. The longitudinal distribution of gas hold-up in a three-phase system, measured by analyzing wave shape and reduction of transmission time is in good agreement with that obtained by using the static pressure method. This indicates the possibility of application of ultrasonic techniques to the simultaneous measurement of phase hold-ups in the three-phase system.  相似文献   

14.
It is well known that the gas distributor can play an important role on the evolution of the bubble size distribution (BSD) in gas-liquid reactors, strippers and absorbers. Therefore, the main subject of the present work was to study the influence of sparger design and process parameters on the BSD in the sparger region of the considered apparatus. For this purpose, both detailed measurements and prediction of the size of bubbles produced at the sparger were carried out in three different experimental apparatuses.The unique set of BSD curves were obtained by analyzing a large amount of bubbles with a measurement based on image analysis technique.Additionally, Colella's model of BSD evolution in bubble columns was further developed by implementing a detailed physical model for predicting the initial BSD at the sparger where the model input is only based on design/process parameters. A validation of the model was carried out using data from two different columns. The comparison between calculated and experimental BSD shows good agreement.  相似文献   

15.
Bubble columns are widely used for conducting gas–liquid and gas–liquid–solid mass transfer/chemical reactions. Sparger is the most important accessory because it decides the bubble size/rise velocity distribution. These, in turn, govern the radial and axial hold-up profiles, the liquid phase flow pattern and hence the performance of bubble columns. In particular, the sparger design is critical if the aspect ratio is low and the sparger design dominates the performance of the bubble column. However, systematic procedure for the selection of sparger design and type are not available in the published literature. This is the specific objective of the present work. In Part I, the performance of different spargers, including the newly developed wheel type of sparger is discussed. Thus the important considerations required for the sparger design are highlighted. The bubble column used in the manufacture of hydrogen peroxide has been considered as a case for illustration.  相似文献   

16.
Global hydrodynamic characteristics—gas hold-up and liquid circulating velocity—were measured in two external loop airlift contactors. Geometrical parameters, such as the height of the airlift, the design of the phase separator, the gas sparger and operating parameters, were found to have significant effects on global hydrodynamic characteristics. In particular, circulation velocity was found to be dependent on liquid volume. To predict gas hold-up in the riser, a simple model, which gives good agreement with experimental data obtained with various airlift geometries, was proposed. © 1997 SCI.  相似文献   

17.
Gas holdup in a semi-batch operated slurry (pulp fibre suspension) bubble column was investigated for two pulp types (softwood and hardwood kraft pulps) over a range of suspension mass concentrations (Cm=0–9% by mass) and superficial gas velocities (Ug=0.0027–0.027 m/s). Three techniques were used: height difference between gassed and ungassed operation; pressure difference as a function column height; and electrical resistance tomography (ERT). Depending on the technique used the average, axial and radial holdup profiles could be determined. In the pulp suspensions, the ERT determined gas holdups correlated well with those determined using the differential height method. In water, the ERT determined gas holdups were significantly lower, but the agreement was significantly improved by increasing the background conductivity by adding 1 g/L salt to the water. This, however, reduced the overall gas holdup due to the effect of the electrolyte on bubble coalescence. Other differences between the three measurement techniques were attributed to limitations in the detection methods and the averaging procedures used to compare results.The presence of pulp fibres reduced gas-holdup at all gas flow rates and suspension concentrations studied and is attributed to increased bubble coalescence which increases bubble size and consequently bubble rise velocity through the suspension. Gas holdup (as determined by ERT) increased with column height. The radial gas profiles were non-uniform and more peaked than the corresponding water profiles. At low suspension concentrations this was attributed to asymmetric suspension recirculation within the column. As suspension concentration increased, channels formed in the suspension with the average void fraction leveling off to a plateau.  相似文献   

18.
采用多分辨分析方法研究了浆态床中压力脉动时序信号的定量特征,借以从这类信号中提取气泡运动参数——气含率.具体做法是:确定压力脉动信号功率谱图上的主频,同时通过小波变换将压力脉动信号分解成不同分辨率下的低频和高频信号,据此确定对应主频的小波主尺度,并对该尺度上的信号的间歇行为以局部间歇性值(local intermittency measure,LIM)定量表征;选取合适的阈值后,对LIM二值化可得床层中的局部气含率.与压降法测得的平均气含率值比较表明,根据LIM分析方法计算得到的气含率与压降法实测气含率相一致,这也表明反应器内气泡的发生是导致浆态床压力脉动的主要因素.本文提出的方法提供了一种适用于高温、高压场合下测取床层气含率的简便、实用方法.  相似文献   

19.
Bubble characteristics and gas hold-up were studied in a two phase (air-aqueous CMC solution) bubble column provided with helical coils and straight tubes as internals. The effects of superficial gas velocity, rheological properties, and volume fraction covered by the internals, on gas hold-up were studied. Hold-up values determined directly and by simultaneous pressure drop measurements matched well. Enhancement of gas hold-up values up to 55 per cent was achieved in systems using internals. The gas hold-up results were also compared with the values obtained from correlations reported in the literature.  相似文献   

20.
Hot-film anemometry and an optical biprobe are used to measure local flow characteristics in the riser of an external loop airlift reactor. Important flow asymmetries are observed above the sparger and developing flow persists through a large part of the riser. As gas flow rate increases, radial gas hold-up profiles change from relatively flat to parabolic while the shape of radial liquid velocity profiles remains constant and Sauter bubble diameter increases. At large gas superficial velocities, slip velocity is found to deviate considerably from the frequently used value of 0.25 m/s. Local measurements allow a better understanding of two-phase flow in airlift reactors and can be used for CFD-modeling development and validation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号