首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epoxy-fatty acids (EpFAs) are endogenous lipid mediators that have a large breadth of biological activities, including the regulation of blood pressure, inflammation, angiogenesis, and pain perception. For the past 20 years, soluble epoxide hydrolase (sEH) has been recognized as the primary enzyme for degrading EpFAs in vivo. The sEH converts EpFAs to the generally less biologically active 1,2-diols, which are quickly eliminated from the body. Thus, inhibitors of sEH are being developed as potential drug therapeutics for various diseases including neuropathic pain. Recent findings suggest that other epoxide hydrolases (EHs) such as microsomal epoxide hydrolase (mEH) and epoxide hydrolase-3 (EH3) can contribute significantly to the in vivo metabolism of EpFAs. In this study, we used two complementary approaches to probe the relative importance of sEH, mEH, and EH3 in 15 human tissue extracts: hydrolysis of 14,15-EET and 13,14-EDP using selective inhibitors and protein quantification. The sEH hydrolyzed the majority of EpFAs in all of the tissues investigated, mEH hydrolyzed a significant portion of EpFAs in several tissues, whereas no significant role in EpFAs metabolism was observed for EH3. Our findings indicate that residual mEH activity could limit the therapeutic efficacy of sEH inhibition in certain organs.  相似文献   

2.
It has been found that soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation, which, in turn, plays a part in the pathogenesis of neuropsychiatric disorders. Meanwhile, epoxy fatty acids such as epoxyeicosatrienoic acids (EETs), epoxyeicosatetraenoic acids (EEQs), and epoxyeicosapentaenoic acids (EDPs) have been found to exert neuroprotective effects in animal models of neuropsychiatric disorders through potent anti-inflammatory actions. Soluble expoxide hydrolase, an enzyme present in all living organisms, metabolizes epoxy fatty acids into the corresponding dihydroxy fatty acids, which are less active than the precursors. In this regard, preclinical findings using sEH inhibitors or Ephx2 knock-out (KO) mice have indicated that the inhibition or deficiency of sEH can have beneficial effects in several models of neuropsychiatric disorders. Thus, this review discusses the current findings of the role of sEH in neuropsychiatric disorders, including depression, autism spectrum disorder (ASD), schizophrenia, Parkinson’s disease (PD), and stroke, as well as the potential mechanisms underlying the therapeutic effects of sEH inhibitors.  相似文献   

3.
Polyunsaturated fatty acids (PUFAs) are essential FAs for human health. Cytochrome P450 oxygenates PUFAs to produce anti-inflammatory and pain-resolving epoxy fatty acids (EpFAs) and other oxylipins whose epoxide ring is opened by the soluble epoxide hydrolase (sEH/Ephx2), resulting in the formation of toxic and pro-inflammatory vicinal diols (dihydroxy-FAs). Pharmacological inhibition of sEH is a promising strategy for the treatment of pain, inflammation, cardiovascular diseases, and other conditions. We tested the efficacy of a potent, selective sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Prophylactic TPPU treatment significantly ameliorated EAE without affecting circulating white blood cell counts. TPPU accumulated in the spinal cords (SCs), which was correlated with plasma TPPU concentration. Targeted lipidomics in EAE SCs and plasma identified that TPPU blocked production of dihydroxy-FAs efficiently and increased some EpFA species including 12(13)-epoxy-octadecenoic acid (12(13)-EpOME) and 17(18)-epoxy-eicosatrienoic acid (17(18)-EpETE). TPPU did not alter levels of cyclooxygenase (COX-1/2) metabolites, while it increased 12-hydroxyeicosatetraenoic acid (12-HETE) and other 12/15-lipoxygenase metabolites. These analytical results are consistent with sEH inhibitors that reduce neuroinflammation and accelerate anti-inflammatory responses, providing the possibility that sEH inhibitors could be used as a disease modifying therapy, as well as for MS-associated pain relief.  相似文献   

4.
Epoxides and diols of polyunsaturated fatty acids (PUFAs) are bioactive and can influence processes such as tumor cell proliferation and angiogenesis. Studies with inhibitors of the soluble epoxide hydrolase (sEH) in animals overexpressing cytochrome P450 enzymes or following the systemic administration of specific epoxides revealed a markedly increased incidence of tumor metastases. To determine whether PUFA epoxides increased metastases in a model of spontaneous breast cancer, sEH-/- mice were crossed onto the polyoma middle T oncogene (PyMT) background. We found that the deletion of the sEH accelerated the growth of primary tumors and increased both the tumor macrophage count and angiogenesis. There were small differences in the epoxide/diol content of tumors, particularly in epoxyoctadecamonoenic acid versus dihydroxyoctadecenoic acid, and marked changes in the expression of proteins linked with cell proliferation and metabolism. However, there was no consequence of sEH inhibition on the formation of metastases in the lymph node or lung. Taken together, our results confirm previous reports of increased tumor growth in animals lacking sEH but fail to substantiate reports of enhanced lymph node or pulmonary metastases.  相似文献   

5.
Mutations within the glucocorticoid receptor (GR) gene locus lead to glucocorticoid resistance which is characterized by several clinical symptoms such as adrenal gland hyperplasia and salt-sensitive hypertension, although the underlying mechanisms are still unknown. We studied GR haploinsufficient (GR+/−) Sprague Dawley rats which, on a standard diet, showed significantly increased plasma aldosterone and corticosterone levels and an adrenocortex hyperplasia accompanied by a normal systolic blood pressure. Following a high salt diet, these rats developed salt-sensitive hypertension and maintained elevated enzyme-soluble epoxide hydrolase (sEH) in adrenal glands, while sEH was significantly decreased in wild-type rats. Furthermore, GR+/− rats showed dysregulation of the equilibrated linoleic and arachidonic acid pathways, with a significant increase of less active metabolites such as 8,9-DiHETrE. In Sprague Dawley rats, GR haploinsufficiency induced steroid disturbances, which provoked hypertension only in combination with high salt intake, which was accompanied by disturbances in sEH and fatty acid metabolism. Our results suggest that sEH inhibition could be a potential target to treat hypertension in patients with GR haploinsufficiency.  相似文献   

6.
Niemann–Pick type C (NPC) disease is a rare autosomal recessive inherited childhood neurodegenerative disease characterized by the accumulation of cholesterol and glycosphingolipids, involving the autophagy-lysosome system. Inhibition of soluble epoxide hydrolase (sEH), an enzyme that metabolizes epoxy fatty acids (EpFAs) to 12-diols, exerts beneficial effects in modulating inflammation and autophagy, critical features of the NPC disease. This study aims to evaluate the effects of UB-EV-52, an sEH inhibitor (sEHi), in an NPC mouse model (Npc) by administering it for 4 weeks (5 mg/kg/day). Behavioral and cognitive tests (open-field test (OF)), elevated plus maze (EPM), novel object recognition test (NORT) and object location test (OLT) demonstrated that the treatment produced an improvement in short- and long-term memory as well as in spatial memory. Furthermore, UB-EV-52 treatment increased body weight and lifespan by 25% and reduced gene expression of the inflammatory markers (i.e., Il-1β and Mcp1) and enhanced oxidative stress (OS) markers (iNOS and Hmox1) in the treated Npc mice group. As for autophagic markers, surprisingly, we found significantly reduced levels of LC3B-II/LC3B-I ratio and significantly reduced brain protein levels of lysosomal-associated membrane protein-1 (LAMP-1) in treated Npc mice group compared to untreated ones in hippocampal tissue. Lipid profile analysis showed a significant reduction of lipid storage in the liver and some slight changes in homogenated brain tissue in the treated NPC mice compared to the untreated groups. Therefore, our results suggest that pharmacological inhibition of sEH ameliorates most of the characteristic features of NPC mice, demonstrating that sEH can be considered a potential therapeutic target for this disease.  相似文献   

7.
This work aimed to construct 3D-QSAR CoMFA and CoMSIA models for a series of 31 FAAH inhibitors, containing the 1,3,4-oxadiazol-2-one moiety. The obtained models were characterized by good statistical parameters: CoMFA Q2 = 0.61, R2 = 0.98; CoMSIA Q2 = 0.64, R2 = 0.93. The CoMFA model field contributions were 54.1% and 45.9% for steric and electrostatic fields, respectively. In the CoMSIA model, electrostatic, steric, hydrogen bond donor, and hydrogen acceptor properties were equal to 34.6%, 23.9%, 23.4%, and 18.0%, respectively. These models were validated by applying the leave-one-out technique, the seven-element test set (CoMFA r2test-set = 0.91; CoMSIA r2test-set = 0.91), a progressive scrambling test, and external validation criteria developed by Golbraikh and Tropsha (CoMFA r20 = 0.98, k = 0.95; CoMSIA r20 = 0.98, k = 0.89). As the statistical significance of the obtained model was confirmed, the results of the CoMFA and CoMSIA field calculation were mapped onto the enzyme binding site. It gave us the opportunity to discuss the structure–activity relationship based on the ligand–enzyme interactions. In particular, examination of the electrostatic properties of the established CoMFA model revealed fields that correspond to the regions where electropositive substituents are not desired, e.g., in the neighborhood of the 1,3,4-oxadiazol-2-one moiety. This highlights the importance of heterocycle, a highly electronegative moiety in this area of each ligand. Examination of hydrogen bond donor and acceptor properties contour maps revealed several spots where the implementation of another hydrogen-bond-donating moiety will positively impact molecules’ binding affinity, e.g., in the neighborhood of the 1,3,4-oxadiazol-2-one ring. On the other hand, there is a large isopleth that refers to the favorable H-bond properties close to the terminal phenoxy group of a ligand, which means that, generally speaking, H-bond acceptors are desired in this area.  相似文献   

8.
The nuclear farnesoid X receptor (FXR) and the enzyme soluble epoxide hydrolase (sEH) are validated molecular targets to treat metabolic disorders such as non-alcoholic steatohepatitis (NASH). Their simultaneous modulation in vivo has demonstrated a triad of anti-NASH effects and thus may generate synergistic efficacy. Here we report dual FXR activators/sEH inhibitors derived from the anti-asthma drug Zafirlukast. Systematic structural optimization of the scaffold has produced favorable dual potency on FXR and sEH while depleting the original cysteinyl leukotriene receptor antagonism of the lead drug. The resulting polypharmacological activity profile holds promise in the treatment of liver-related metabolic diseases.  相似文献   

9.
The genome of the human intracellular pathogen Mycobacterium tuberculosis encodes an unusually large number of epoxide hydrolases, which are thought to be involved in lipid metabolism and detoxification reactions needed to endure the hostile environment of host macrophages. These enzymes therefore represent suitable targets for compounds such as urea derivatives, which are known inhibitors of soluble epoxide hydrolases. In this work, we studied in vitro the effect of the thiourea drug isoxyl on six epoxide hydrolases of M. tuberculosis using a fatty acid substrate. We show that one of the proteins inhibited by isoxyl is EphD, an enzyme involved in the metabolism of mycolic acids, key components of the mycobacterial cell wall. By analyzing mycolic acid profiles, we demonstrate the inhibition of EphD epoxide hydrolase activity by isoxyl and two other urea-based inhibitors, thiacetazone and AU1235, inside the mycobacterial cell.  相似文献   

10.
可溶性环氧化物水解酶(Soluble epoxide hydrolases,sEH)是一种能代谢环氧脂肪酸的酶,它在哺乳动物中广泛存在,能将内源性环氧二十碳三烯酸(Epoxyeicosatrienoic acids or EETs)转化为二羟基二十碳三烯酸(Dihydroxy epoxyeicosatrienoic acids or DHETs)。内源性EETs是由花生四烯酸(Arachidonic acid or AA)经细胞色素P450氧化而来,它是生物体内重要的信号分子,具有调节离子转运和基因表达、血管扩张、抗炎等作用。在动物体内,有很多种途径可以降解EETs,其中sEH将EETs代谢为DHETs是最主要的代谢途径,使EETs的浓度降低,生理活性下降,从而使体内的血压升高,并进一步影响肾脏,心脏等功能。研究表明,抑制sEH的活性可治疗多种心血管疾病及炎症。因此开发新型sEH的抑制剂在治疗相关疾病中具有很好的应用价值。主要概述了sEH的抑制剂的作用机理以及抑制剂研究的最新进展,并展望了抑制剂今后的研究方向。  相似文献   

11.
以5-甲基-1,3,4-二唑-2(3H)-酮为原料,经过烷基化、扩环、水解和酰胺化等4步反应合成了12个新型的1,2,4-三嗪酮类化合物6a~6l,其结构经1H NMR、13C NMR和MS表征。初步生物活性测试结果表明,在50 g/mL质量浓度下,部分目标化合物对小麦赤霉病菌、辣椒枯萎病菌和苹果腐烂病菌表现出一定的生物活性。  相似文献   

12.
Diabetic neuropathy (DN) is a major complication of diabetes mellitus. We have previously reported the efficacy of Stachybotrys microspora triprenyl phenol-44D (SMTP-44D) for DN through its potential antioxidant and anti-inflammatory activities. However, the mechanisms underlying the antioxidant and anti-inflammatory activities of SMTP-44D remain unclear. The present study aimed to explore the mechanism of these effects of SMTP-44D in regard to its inhibition of soluble epoxide hydrolase (sEH) in immortalized mouse Schwann cells (IMS32) following high glucose treatment. IMS32 cells were incubated in a high glucose medium for 48 h and then treated with SMTP-44D for 48 h. After incubation, the ratio of epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs), oxidative stress markers, such as NADPH oxidase-1 and malondialdehyde, inflammatory factors, such as the ratio of nuclear to cytosolic levels of NF-κB and the levels of IL-6, MCP-1, MMP-9, the receptor for the advanced glycation end product (RAGE), and apoptosis, were evaluated. SMTP-44D treatment considerably increased the ratio of EETs to DHETs and mitigated oxidative stress, inflammation, RAGE induction, and apoptosis after high glucose treatment. In conclusion, SMTP-44D can suppress the induction of apoptosis by exerting antioxidant and anti-inflammatory effects, possibly through sEH inhibition. SMTP-44D can be a potential therapeutic agent against DN.  相似文献   

13.
Time and resource constraints necessitate increasingly early decisions to advance or halt pre-clinical drug discovery programs. Early discovery or “tool” compounds may be potent inhibitors of new targets, but all too often they exhibit poor pharmaceutical and pharmacokinetic properties that make early assessment of in vivo efficacy difficult. 1,3-Dicyclohexylurea, a potent and selective inhibitor of soluble epoxide hydrolase (sEH), reduces blood pressure in hypertensive preclinical animal models when administered intraperitoneally using DMSO/corn oil as a delivery vehicle. However, the poor aqueous solubility of DCU poses a challenge for in vivo dosing in a multiple dose situation. Therefore, we developed a nanosuspension formulation of DCU to support oral, intravenous bolus and intravenous infusion dosing. Use of the nanosuspension formulation maintained DCU free plasma levels above the sEH IC50 and demonstrated that the application of formulation technology can accelerate in vivo evaluation of new targets by enabling pharmacodynamic studies of poorly soluble compounds. This study was supported by Pharmacokinetics, Dynamics and Metabolism at Pfizer.  相似文献   

14.
Simple urea compounds (“phurealipids”) have been identified from the entomopathogenic bacterium Photorhabdus luminescens, and their biosynthesis was elucidated. Very similar analogues of these compounds have been previously developed as inhibitors of juvenile hormone epoxide hydrolase (JHEH), a key enzyme in insect development and growth. Phurealipids also inhibit JHEH, and therefore phurealipids might contribute to bacterial virulence.  相似文献   

15.
The Centers for Disease Control and Prevention (CDC) recognizes Neisseria gonorrhoeae as an urgent-threat Gram-negative bacterial pathogen. Additionally, resistance to frontline treatment (dual therapy with azithromycin and ceftriaxone) has led to the emergence of multidrug-resistant N. gonorrhoeae, which has caused a global health crisis. The drug pipeline for N. gonorrhoeae has been severely lacking as new antibacterial agents have not been approved by the FDA in the last twenty years. Thus, there is a need for new chemical entities active against drug-resistant N. gonorrhoeae. Trifluoromethylsulfonyl (SO2CF3), trifluoromethylthio (SCF3), and pentafluorosulfanyl (SF5) containing N-(1,3,4-oxadiazol-2-yl)benzamides are novel compounds with potent activities against Gram-positive bacterial pathogens. Here, we report the discovery of new N-(1,3,4-oxadiazol-2-yl)benzamides (HSGN-237 and -238) with highly potent activity against N. gonorrhoeae. Additionally, these new compounds were shown to have activity against clinically important Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and Listeria monocytogenes (minimum inhibitory concentrations (MICs) as low as 0.25 µg/mL). Both compounds were highly tolerable to human cell lines. Moreover, HSGN-238 showed an outstanding ability to permeate across the gastrointestinal tract, indicating it would have a high systemic absorption if used as an anti-gonococcal therapeutic.  相似文献   

16.
Protein tyrosine phosphatase 1B (PTP1B) is an important target for the treatment of diabetes. A series of thiazolidin-4-one derivatives 8 – 22 was designed, synthesized and investigated as PTP1B inhibitors. The new molecules inhibited PTP1B with IC50 values in the micromolar range. 5-(Furan-2-ylmethylene)-2-(4-nitrophenylimino)thiazolidin-4-one ( 17 ) exhibited potency with a competitive type of enzyme inhibition. structure–activity relationship studies revealed various structural facets important for the potency of these analogues. The findings revealed a requirement for a nitro group-including hydrophobic heteroaryl ring for PTP1B inhibition. Molecular docking studies afforded good correlation with experimental results. H-bonding and π–π interactions were responsible for optimal binding and effective stabilization of virtual protein-ligand complexes. Furthermore, in-silico pharmacokinetic properties of test compounds predicted their drug-like characteristics for potential oral use as antidiabetic agents.Additionally, a binding site model demonstrating crucial pharmacophoric characteristics influencing potency and binding affinity of inhibitors has been proposed, which can be employed in the design of future potential PTP1B inhibitors.  相似文献   

17.
Soluble epoxide hydrolase (sEH) is involved in the regulation of many biological processes by metabolizing the key bioactive lipid mediator, epoxyeicosatrienoic acids. For the development of sEH inhibitors with improved physicochemical properties, we performed both a fragment screening and a high‐throughput screening aiming at an integrated hit evaluation and lead generation. Followed by a joint dose–response analysis to confirm the hits, the identified actives were then effectively triaged by a structure‐based hit‐classification approach to three prioritized series. Two distinct scaffolds were identified as tractable starting points for potential lead chemistry work. The oxoindoline series bind at the right‐hand side of the active‐site pocket with hydrogen bonds to the protein. The 2‐phenylbenzimidazole‐4‐sulfonamide series bind at the central channel with significant induced fit, which has not been previously reported. On the basis of the encouraging initial results, we envision that a new lead series with improved properties could be generated if a vector is found that could merge the cyclohexyl functionality of the oxoindoline series with the trifluoromethyl moiety of the 2‐phenylbenzimidazole‐4‐sulfonamide series.  相似文献   

18.
Cholesterol esterase (CEase), a serine hydrolase thought to be involved in atherogenesis and thus coronary heart disease, is considered as a target for inhibitor development. We investigated recombinant human and murine CEases with a new fluorometric assay in a structure–activity relationship study of a small library of ω‐phthalimidoalkyl aryl ureas. The urea motif with an attached 3,5‐bis(trifluoromethyl)phenyl group and the aromatic character of the ω‐phthalimide residue were most important for inhibitory activity. In addition, an alkyl chain composed of three or four methylene groups, connecting the urea and phthalimide moieties, was found to be an optimal spacer for inhibitors. The so‐optimized compounds 2 [1‐(3,5‐bis(trifluoromethyl)phenyl)‐3‐(3‐(1,3‐dioxoisoindolin‐2‐yl)propyl)urea] and 21 [1‐(3,5‐bis(trifluoromethyl)phenyl)‐3‐(4‐(1,3‐dioxoisoindolin‐2‐yl)butyl)urea] exhibited dissociation constants (Ki) of 1–19 μm on the two CEases and showed either a competitive ( 2 on the human enzyme and 21 on the murine enzyme) or a noncompetitive mode of inhibition. Two related serine hydrolases—monoacylglycerol lipase and fatty acid amide hydrolase—were inhibited by ω‐phthalimidoalkyl aryl ureas to a lesser extent.  相似文献   

19.
Four heterocyclic compounds namely 2-amino-1,3,4-thiadiazoles (AT), 5-Methyl-2-amino-1,3,4-thiadiazoles (MAT), 5-Ethyl-2-amino-1,3,4-thiadiazoles (EAT) and 5-Propyl-2-amino-1,3,4-thiadiazoles (PAT) were synthesized and their influence on the inhibition of corrosion of mild steel (MS) in 0.5 M H2S04 was investigated by weight loss and potentiodynamic polarization techniques. The values of activation energy, free energy of adsorption, heat of adsorption, enthalpy of activation and entropy of activation were also calculated to investigate the mechanism of corrosion inhibition. Potentiodynamic polarization studies were carried out at room temperature, and showed that all the compounds studied are mixed type inhibitors causing blocking of active sites on the metal. The inhibition efficiency of the compounds was found to vary with concentration, temperature and immersion time. Good inhibition efficiency was evidenced in the sulfuric acid solution. The adsorption of the compounds on mild steel for sulfuric acid was found to obey Langmuir’s adsorption isotherm. FT–IR spectroscopic studies were also used to investigate the purity of compounds synthesized.  相似文献   

20.
A recombinant soluble epoxide hydrolase (sEH) of zebra fish, Danio rerio, and its variant were developed and characterized. The variant consisted of five-point mutations such as Glu88Arg, Thr102Ala, Met368Ile, Lys398Glu and Gly412Asp. The catalytically important amino acids of Asp331, Tyr379, Tyr460, Asp496 and His524 were determined to be highly conserved in both of the sEHs, on the basis of multiple sequence alignment and homology modeling. The enantiomeric ratio of the variant sEH was 1.43-fold higher than that of the wild-type sEH. Interestingly, both of the sEH and its variant possessed (S)-styrene oxide-preferred hydrolytic activity, while the microsomal EH (mEH) of D. rerio exhibited the enantiopreference toward (R)-enantiomer, indicating that (R)- and (S)-styrene oxide could be prepared by using sEH and mEH, respectively. (R)-Styrene oxide with high enantiopurity of 99%ee could be obtained by the enantioselective hydrolysis activities of the recombinant Escherichia coli whole cells expressing the wild-type and variant sEHs of D. rerio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号