首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibitors of the bacterial deacetylase LpxC are a promising class of novel antibiotics, being selectively active against Gram-negative bacteria. To improve the biological activity of reported C-furanosidic LpxC inhibitors, the stereochemistry at positions 3 and 4 of the tetrahydrofuran ring was varied. In chiral pool syntheses starting from d -gulono-γ-lactone and d -ribose, a series of (3S,4R)-configured dihydroxytetrahydrofuran derivatives was obtained, of which the (2S,5S)-configured hydroxamic acid 15 ((2S,3S,4R,5S)-N,3,4-trihydroxy-5-(4-{[4-(morpholinomethyl)phenyl]ethynyl}phenyl)tetrahydrofuran-2-carboxamide) was found to be the most potent LpxC inhibitor (Ki=0.4 μm ), exhibiting the highest antibacterial activity against E. coli BL21 (DE3) and the D22 strain. Additionally, molecular docking studies were performed to rationalize the obtained structure–activity relationships.  相似文献   

2.
Multidrug resistance caused by ATP binding cassette transporter P‐glycoprotein (P‐gp) through extrusion of anticancer drugs from the cells is a major cause of failure in cancer chemotherapy. Previously, selenazole‐containing cyclic peptides were reported as P‐gp inhibitors and were also used for co‐crystallization with mouse P‐gp, which has 87 % homology to human P‐gp. It has been reported that human P‐gp can simultaneously accommodate two to three moderately sized molecules at the drug binding pocket. Our in silico analysis, based on the homology model of human P‐gp, spurred our efforts to investigate the optimal size of (S)‐valine‐derived thiazole units that can be accommodated at the drug binding pocket. Towards this goal, we synthesized varying lengths of linear and cyclic derivatives of (S)‐valine‐derived thiazole units to investigate the optimal size, lipophilicity, and structural form (linear or cyclic) of valine‐derived thiazole peptides that can be accommodated in the P‐gp binding pocket and affects its activity, previously an unexplored concept. Among these oligomers, lipophilic linear ( 13 ) and cyclic trimer ( 17 ) derivatives of QZ59S‐SSS were found to be the most and equally potent inhibitors of human P‐gp (IC50=1.5 μM ). As the cyclic trimer and linear trimer compounds are equipotent, future studies should focus on noncyclic counterparts of cyclic peptides maintaining linear trimer length. A binding model of the linear trimer 13 within the drug binding site on the homology model of human P‐gp represents an opportunity for future optimization, specifically replacing valine and thiazole groups in the noncyclic form.  相似文献   

3.
A number of aza‐heterocyclic compounds, which share the 5,6‐dihydropyrrolo[2,1‐a]isoquinoline (DHPIQ) scaffold with members of the lamellarin alkaloid family, were synthesized and evaluated for their ability to reverse in vitro multidrug resistance in cancer cells through inhibition of P‐glycoprotein (P‐gp) and/or multidrug‐resistance‐associated protein 1. Most of the investigated DHPIQ compounds proved to be selective P‐gp modulators, and the most potent modulator, 8,9‐diethoxy‐1‐(3,4‐diethoxyphenyl)‐3‐(furan‐2‐yl)‐5,6‐dihydropyrrolo[2,1‐a]isoquinoline‐2‐carbaldehyde, attained sub‐micromolar inhibitory potency (IC50: 0.19 μm ). Schiff bases prepared by the condensation of some 1‐aryl‐DHPIQ aldehydes with p‐aminophenol also proved to be of some interest, and one of them, 4‐((1‐(4‐fluorophenyl)‐5,6‐dihydro‐8,9‐dimethoxypyrrolo[2,1‐a]isoquinolin‐2‐yl)methyleneamino)phenol, had an IC50 value of 1.01 μm . In drug combination assays in multidrug‐resistant cells, some DHPIQ compounds, at nontoxic concentrations, significantly increased the cytotoxicity of doxorubicin in a concentration‐dependent manner. Studies of structure–activity relationships and investigation of the chemical stability of Schiff bases provided physicochemical information useful for molecular optimization of lamellarin‐like cytotoxic drugs active toward chemoresistant tumors as well as nontoxic reversers of P‐gp‐mediated multidrug resistance in tumor cells.  相似文献   

4.
Novel candidates of 3-(4-(thiophen-2-yl)-pyridin/pyran/pyrimidin/pyrazol-2-yl)-1H-indole derivatives (2–12) were designed by pairing the pyridine/pyrane/pyrimidine/pyrazole heterocycles with indole and thiophene to investigate their potential activities as (2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) inhibitors. The purpose of these derivatives’ modification is to create high-efficiency antioxidants, especially against ABTS, as a result of the efficiency of this set of key heterocycles in the inhibition of ROS. Herein, 2D QSAR modeling was performed to recommend the most promising members for further in vitro investigations. Furthermore, the pharmacological assay for antioxidant activity evaluation of the yielded indole-based heterocycles was tested against ABTS (2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid); by utilizing ascorbic acid as the standard. Candidate 10 showed higher antioxidant activity (IC50 = 28.23 μg/mL) than ascorbic acid itself which achieved (IC50 = 30.03 μg/mL). Moreover, molecular docking studies were performed for the newly designed and synthesized drug candidates to propose their mechanism of action as promising cytochrome c peroxidase inhibitors compared to ascorbic acid as a reference standard. Our findings could be promising in the medicinal chemistry scope for further optimization of the newly designed and synthesized compounds regarding the introduced structure-activity relationship study (SAR) in order to get a superior antioxidant lead compound in the near future.  相似文献   

5.
Schistosomiasis is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, which affects over 200 million people worldwide and leads to at least 300,000 deaths every year. In this study, initial screening revealed the triazole-based hydroxamate 2 b (N-hydroxy-1-phenyl-1H-1,2,3-triazole-4-carboxamide) exhibiting potent inhibitory activity toward the novel antiparasitic target Schistosoma mansoni histone deacetylase 8 (smHDAC8) and promising selectivity over the major human HDACs. Subsequent crystallographic studies of the 2 b /smHDAC8 complex revealed key interactions between the inhibitor and the enzyme's active site, thus explaining the unique selectivity profile of the inhibitor. Further chemical modifications of 2 b led to the discovery of 4-fluorophenoxy derivative 21 (1-[5-chloro-2-(4-fluorophenoxy)phenyl]-N-hydroxy-1H-1,2,3-triazole-4-carboxamide), a nanomolar smHDAC8 inhibitor (IC50=0.5 μM), exceeding the smHDAC8 inhibitory activity of 2 b and SAHA (vorinostat), while exhibiting an improved selectivity profile over the investigated human HDACs. Collectively, this study reveals specific interactions between smHDAC8 and the synthesized triazole-based inhibitors and demonstrates that these small molecules represent promising lead structures, which could be further developed in the search for novel drugs for the treatment of schistosomiasis.  相似文献   

6.
A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been identified as the pathogen responsible for the outbreak of a severe, rapidly developing pneumonia (Coronavirus disease 2019, COVID-19). The virus enzyme, called 3CLpro or main protease (Mpro), is essential for viral replication, making it a most promising target for antiviral drug development. Recently, we adopted the drug repurposing as appropriate strategy to give fast response to global COVID-19 epidemic, by demonstrating that the zonulin octapeptide inhibitor AT1001 (Larazotide acetate) binds Mpro catalytic domain. Thus, in the present study we tried to investigate the antiviral activity of AT1001, along with five derivatives, by cell-based assays. Our results provide with the identification of AT1001 peptide molecular framework for lead optimization step to develop new generations of antiviral agents of SARS-CoV-2 with an improved biological activity, expanding the chance for success in clinical trials.  相似文献   

7.
In this study, we have introduced newly synthesized substituted benzothiazole based berberine derivatives that have been analyzed for their in vitro and in silico biological properties. The activity towards various kinds of influenza virus strains by employing the cytopathic effect (CPE) and sulforhodamine B (SRB) assay. Several berberine–benzothiazole derivatives (BBDs), such as BBD1, BBD3, BBD4, BBD5, BBD7, and BBD11, demonstrated interesting anti-influenza virus activity on influenza A viruses (A/PR/8/34, A/Vic/3/75) and influenza B viral (B/Lee/40, and B/Maryland/1/59) strain, respectively. Furthermore, by testing neuraminidase activity (NA) with the neuraminidase assay kit, it was identified that BBD7 has potent neuraminidase activity. The molecular docking analysis further suggests that the BBD1–BBD14 compounds’ antiviral activity may be because of interaction with residues of NA, and the same as in oseltamivir.  相似文献   

8.
To date, chronic inflammation is involved in most main human pathologies such as cancer, and autoimmune, cardiovascular or neurodegenerative disorders. Studies suggest that different prostanoids, especially prostaglandin E2, and their own synthase (cyclooxygenase enzyme-COX) can promote tumor growth by activating signaling pathways which control cell proliferation, migration, apoptosis, and angiogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs) are used, alongside corticosteroids, to treat inflammatory symptoms particularly in all chronic diseases. However, their toxicity from COX inhibition and the suppression of physiologically important prostaglandins limits their use. Therefore, in continuation of our efforts in the development of potent, safe, non-toxic chemopreventive compounds, we report herein the design, synthesis, biological evaluation of new series of Schiff base-type hybrid compounds containing differently substituted N-acyl hydrazone moieties, 1,3,4-oxadiazole ring, and 4,6-dimethylpyridine core. The anti-COX-1/COX-2, antioxidant and anticancer activities were studied. Schiff base 13, containing 2-bromobenzylidene residue inhibited the activity of both isoenzymes, COX-1 and COX-2 at a lower concentration than standard drugs, and its COX-2/COX-1 selectivity ratio was similar to meloxicam. Furthermore, the results of cytotoxicity assay indicated that all of the tested compounds exhibited potent anti-cancer activity against A549, MCF-7, LoVo, and LoVo/Dx cell lines, compared with piroxicam and meloxicam. Moreover, our experimental study was supported by density functional theory (DFT) and molecular docking to describe the binding mode of new structures to cyclooxygenase.  相似文献   

9.
To develop new alkaline phosphatase inhibitors (ALP), a series of pyrazolo-oxothiazolidine derivatives were synthesized and biologically assessed, and the results showed that all of the synthesized compounds significantly inhibited ALP. Specifically, compound 7g displayed the strongest inhibitory activity (IC50 = 0.045 ± 0.004 μM), which is 116-fold more active than monopotassium phosphate (IC50 = 5.242 ± 0.472 μM) as a standard reference. The most potent compound among the series (7g) was checked for its mode of binding with the enzyme and shown as non-competitively binding with the target enzyme. The antioxidant activity of these compounds was examined to investigate the radical scavenging effect. Moreover, the MTT assay method was performed to evaluate their toxic effects on the viability of MG-63 human osteosarcoma cells, and all compounds have no toxic effect on the cells at 4 μM. Computational research was also conducted to examine the binding affinity of the ligands with alkaline phosphatase, and the results revealed that all compounds showed good binding energy values within the active site of the target. Therefore, these novel pyrazolo-oxothiazolidine derivatives might be employed as promising pharmacophores for potent and selective alkaline phosphatase inhibitors.  相似文献   

10.
Overexpression of breast cancer resistance transporter (BCRP/ABCG2) in cancers has been explained for the failure of chemotherapy in clinic. Inhibition of the transport activity of BCRP during chemotherapy should reverse multidrug resistance. In this study, a triazole-bridged flavonoid dimer Ac15(Az8)2 was identified as a potent, nontoxic, and selective BCRP inhibitor. Using BCRP-overexpressing cell lines, its EC50 for reversing BCRP-mediated topotecan resistance was 3 nM in MCF7/MX100 and 72 nM in S1M180 in vitro. Mechanistic studies revealed that Ac15(Az8)2 restored intracellular drug accumulation by inhibiting BCRP-ATPase activity and drug efflux. It did not down-regulate the cell surface BCRP level to enhance drug retention. It was not a transport substrate of BCRP and showed a non-competitive relationship with DOX in binding to BCRP. A pharmacokinetic study revealed that I.P. administration of 45 mg/kg of Ac15(Az8)2 resulted in plasma concentration above its EC50 (72 nM) for longer than 24 h. It increased the AUC of topotecan by 2-fold. In an in vivo model of BCRP-overexpressing S1M180 xenograft in Balb/c nude mice, it significantly reversed BCRP-mediated topotecan resistance and inhibited tumor growth by 40% with no serious body weight loss or death incidence. Moreover, it also increased the topotecan level in the S1M180 xenograft by 2-fold. Our results suggest that Ac15(Az8)2 is a promising candidate for further investigation into combination therapy for treating BCRP-overexpressing cancers.  相似文献   

11.
Inducible Nitric Oxide Synthase (iNOS) has been involved in a variety of diseases, and thus it is interesting to discover and optimize new iNOS inhibitors. In previous studies, a series of benzimidazole-quinolinone derivatives with high inhibitory activity against human iNOS were discovered. In this work, three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular docking and molecular dynamics (MD) simulation approaches were applied to investigate the functionalities of active molecular interaction between these active ligands and iNOS. A QSAR model with R2 of 0.9356, Q2 of 0.8373 and Pearson-R value of 0.9406 was constructed, which presents a good predictive ability in both internal and external validation. Furthermore, a combined analysis incorporating the obtained model and the MD results indicates: (1) compounds with the proper-size hydrophobic substituents at position 3 in ring-C (R3 substituent), hydrophilic substituents near the X6 of ring-D and hydrophilic or H-bond acceptor groups at position 2 in ring-B show enhanced biological activities; (2) Met368, Trp366, Gly365, Tyr367, Phe363, Pro344, Gln257, Val346, Asn364, Met349, Thr370, Glu371 and Tyr485 are key amino acids in the active pocket, and activities of iNOS inhibitors are consistent with their capability to alter the position of these important residues, especially Glu371 and Thr370. The results provide a set of useful guidelines for the rational design of novel iNOS inhibitors.  相似文献   

12.
In this contribution, four new compounds synthesized from 4-hydroxycoumarin and tyramine/octopamine/norepinephrine/3-methoxytyramine are characterized spectroscopically (IR and NMR), chromatographically (UHPLC-DAD), and structurally at the B3LYP/6-311++G*(d,p) level of theory. The crystal structure of the 4-hydroxycoumarin-octopamine derivative was solved and used as a starting geometry for structural optimization. Along with the previously obtained 4-hydroxycoumarin-dopamine derivative, the intramolecular interactions governing the stability of these compounds were quantified by NBO and QTAIM analyses. Condensed Fukui functions and the HOMO-LUMO gap were calculated and correlated with the number and position of OH groups in the structures. In vitro cytotoxicity experiments were performed to elucidate the possible antitumor activity of the tested substances. For this purpose, four cell lines were selected, namely human colon cancer (HCT-116), human adenocarcinoma (HeLa), human breast cancer (MDA-MB-231), and healthy human lung fibroblast (MRC-5) lines. A significant selectivity towards colorectal carcinoma cells was observed. Molecular docking and molecular dynamics studies with carbonic anhydrase, a prognostic factor in several cancers, complemented the experimental results. The calculated MD binding energies coincided well with the experimental activity, and indicated 4-hydroxycoumarin-dopamine and 4-hydroxycoumarin-3-methoxytyramine as the most active compounds. The ecotoxicology assessment proved that the obtained compounds have a low impact on the daphnia, fish, and green algae population.  相似文献   

13.
As a continuation of our study in the GABAA receptor modulators field, we report the design and synthesis of new 8-chloropyrazolo[1,5-a]quinazoline derivatives. Molecular docking studies and the evaluation of the ‘Proximity Frequencies’ (exploiting our reported model) were performed on all the final compounds (3, 4, 6a–c, 7a,b, 8, 9, 12a–c, 13a,b, 14–19) to predict their profile on the α1β2γ2-GABAAR subtype. Furthermore, to verify whether the information coming from this virtual model was valid and, at the same time, to complete the study on this series, we evaluated the effects of compounds (1–100 µM) on the modulation of GABAA receptor function through electrophysiological techniques on recombinant α1β2γ2L-GABAA receptors expressed in Xenopus laevis oocytes. The matching between the virtual prediction and the electrophysiological tests makes our model a useful tool for the study of GABAA receptor modulators.  相似文献   

14.
In our research, we used nicotinic acid as a starting compound, which was subjected to a series of condensation reactions with appropriate aldehydes. As a result of these reactions, we were able to obtain a series of twelve acylhydrazones, two of which showed promising activity against Gram-positive bacteria (MIC = 1.95–15.62 µg/mL), especially against Staphylococcus epidermidis ATCC 12228 (MIC = 1.95 µg/mL). Moreover, the activity of compound 13 against the Staphylococcus aureus ATCC 43300 strain, i.e., the MRSA strain, was MIC = 7.81 µg/mL. Then, we subjected the entire series of acylhydrazones to a cyclization reaction in the acetic anhydride, thanks to which we were able to obtain twelve new 3-acetyl-2,5-disubstituted-1,3,4-oxadiazoline derivatives. Obtained 1,3,4-oxadiazolines were also tested for antimicrobial activity. The results showed high activity of compound 25 with a 5-nitrofuran substituent, which was active against all tested strains. The most promising activity of this compound was found against Gram-positive bacteria, in particular against Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538 (MIC = 7.81 µg/mL) and ATCC 43300 MRSA strains (MIC = 15.62 µg/mL). Importantly, the best performing compounds did not show cytotoxicity against normal cell lines. It seems practical to use some of these compounds or their derivatives in the future in the prevention and treatment of infections caused by some pathogenic or opportunistic microorganisms.  相似文献   

15.
Pyrazolines derivatives are nitrogen-containing heterocyclic compound, which exhibit the broad spectrum of biological activities such as antibacterial, antifungal, antiprotozoal, and anti-inflammatory. The optimized geometry, frequency, and intensity of vibrational bands of these compounds are obtained by the density function theory (DFT) using 6–31+G(d,p) basis set. The scaled harmonic vibrational frequencies have been compared with experimental Fourier transform infrared spectroscopy (FTIR) values and found to be in good agreement. The electronic properties of these molecules are discussed with the help of highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and molecular electrostatic potential (MESP) surfaces, and a number of electronic and thermodynamic parameters are calculated, which are closely related to their chemical reactivity and reaction path. We also notice that pyrazoline derivatives show biological activity for preventing dyskinesia. This study may provide a further investigation on pyrazolines derivatives for pharmacological importance.  相似文献   

16.
A comparative study on two hexahydroacridine-1,8(2H,5H)-dione deriv-atives namely, 9,10-bis(4-fluorophenyl)-3,3,6,6-tetramethyl-3,4,-6,7,9,10-hexahy-droacridine-1,8(2H,5H)-dione (FTHD) and 10-(4-fluorophenyl)-3,3,6,6-tetramethyl-9-(3,4,5-trimethoxyphenyl)-3,4,6,-7,9,10-hexahyd-roacridine-1,8(2H,5H)-dione (FTMPHD) has been performed. 1H and 13C NMR spectra have been recorded in the CDCl3 solvent. The equilibrium geometries of FTHD and FTMPHD have been determined and analyzed at DFT level employing B3PW91/6-311++G (d,p) method. The vibrational spectra of both the molecules are calculated and compared with the experimental FT-IR spectra. 1H and 13C NMR spectra have been calculated by using the gauge-independent atomic orbital (GIAO) method. The calculated spectra have been found to be in good agreement with the experimental spectra. The quantum theory of atoms-in-molecule (QTAIM) approach is employed to study various intramolecular interactions within these molecules. The highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) and the molecular electrostatic potential (MESP) surfaces have been constructed and analyzed. Various electronic as well as thermodynamic parameters have been reported.  相似文献   

17.
Furan-oxadiazole structural hybrids belong to the most promising and biologically active classes of oxygen and nitrogen containing five member heterocycles which have expanded therapeutic scope and potential in the fields of pharmacology, medicinal chemistry and pharmaceutics. A novel series 5a–j of benzofuran-oxadiazole molecules incorporating S-alkylated amide linkage have been synthesized using ultrasonic irradiation and screened for bacterial tyrosinase inhibition activity. Most of the synthesized furan-oxadiazole structural motifs exhibited significant tyrosinase inhibition activity in the micromolar range, with one of the derivatives being more potent than the standard drug ascorbic acid. Among the tested compounds, the scaffold 5a displayed more tyrosinase inhibition efficacy IC50 (11 ± 0.25 μM) than the ascorbic acid IC50 (11.5 ± 0.1 μM). Compounds 5b, 5c and 5d efficiently inhibited bacterial tyrosinase with IC50 values in the range of 12.4 ± 0.0–15.5 ± 0.0 μM. The 2-fluorophenylacetamide containing furan-oxadiazole compound 5a may be considered as a potential lead for tyrosinase inhibition with lesser side effects as a skin whitening and malignant melanoma anticancer agent.  相似文献   

18.
19.
Herein we describe the synthesis of a new family of kynurenamine derivatives with a urea or thiourea moiety, together with their in vitro biological evaluation as inhibitors of both neuronal and inducible nitric oxide synthases (nNOS and iNOS, respectively), enzymes responsible for the biogenesis of NO. These compounds were synthesized from a 5‐substituted‐2‐nitrophenyl vinyl ketone scaffold in a five‐step procedure with moderate to high chemical yields. In general, the assayed compounds show greater inhibition of iNOS than of nNOS, with 1‐[3‐(2‐amino‐5‐chlorophenyl)‐3‐oxopropyl]‐3‐ethylurea (compound 5 n ) being the most potent iNOS inhibitor in the series and the most iNOS/nNOS‐selective compound. In this regard, we performed molecular modeling studies to propose a binding mode for this family of compounds to both enzymes and, thereby, to elucidate the differential molecular features that could explain the observed selectivity between iNOS and nNOS.  相似文献   

20.
Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered to be ideal alternatives to non‐biodegradable synthetic plastics. However, study of PhaCs has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty, along with lack of a crystal structure, has become the main hurdle to understanding and engineering PhaCs for economical PHA production. Here we report the synthesis of two carbadethia CoA analogues—sT‐CH2‐CoA ( 26 a ) and sTet‐CH2‐CoA ( 26 b )—as well as sT‐aldehyde (saturated trimer aldehyde, 29 ), as new PhaC inhibitors. Study of these analogues with PhaECAv revealed that 26 a / b and 29 are competitive and mixed inhibitors, respectively. Both the CoA moiety and extension of PHA chain will increase binding affinity; this is consistent with our docking study. Estimation of the Kic values of 26 a and 26 b predicts that a CoA analogue incorporating an octameric hydroxybutanoate (HB) chain might facilitate the formation of a kinetically well‐behaved synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号