共查询到20条相似文献,搜索用时 31 毫秒
1.
Manoj Kumar Nayak Sekar Saranya Bhose Ganga Abdul Kaffoor Abdul Hakeem Ram Prakash Sharma Oluwole Daniel Makinde 《亚洲传热研究》2020,49(8):4945-4967
The present analysis is meant to explore the computational solution of the problem dealing with the impact of relaxation-retardation viscous dissipation and chemical reaction on the flow of Oldroyd-B nanofluid over a Riga plate. Hyperbolic time-varying boundary conditions are taken into consideration. The basic modeled problem being transformed into nonlinear differential equations are solved numerically by efficient fourth-order Runge-Kutta method along with shooting technique. Characteristics of controlling parameters on velocity, temperature, and concentration along with skin friction, Nusselt number, and Sherwood number profiles are presented with the help of well-featured graphs. The relaxation and retardation parameters affect well flow profiles. In addition, an accelerated flow pattern is accomplished due to the augmentation of the modified Hartmann number. Furthermore, the presence of relaxation-retardation viscous dissipation improves the temperature field. 相似文献
2.
Adebowale Martins Obalalu Lawal Lanre Adebayo Ilhami Colak Adebayo Olusegun Ajala Fatai Adisa Wahaab 《亚洲传热研究》2022,51(5):3951-3978
Minimizing entropy generation is a technique that helps improve the effectiveness of real processes by studying the associated irreversibility of system performance of nanofluid. This study examines the entropy generation analysis of electromagnetohydrodynamic radiative Casson flow induced by a stretching Riga plate in a non-Darcian porous medium under the influence of internal energy change, Arrhenius activation energy, chemical reaction, and melting heat transfer. The thermophysical features of the fluid are assumed constant in most of the literature. However, this current research bridges this gap by considering viscosity, conductivity, and diffusivity as temperature-dependent variables. Also, the exponential decaying Grinberg term is used as a resistive force in this investigation due to the electromagnetic properties of the Riga plate in the momentum conservation equation. Some suitable dimensionless variables are introduced to remodel the transport equations into unitless ones and then solved numerically by employing Galerkin Weighted Residual Method. Analyses reveal that the Casson parameter declines the fluid velocity, while the existence of the melting parameter has the opposite effect. Also, this article includes some future recommendations. 相似文献
3.
This article attempts to report the flow mechanism of Jeffrey nanofluid flow on a Riga plate integrating the influences of viscous dissipation, irregular heat source/sink, Brownian motion, and thermophoretic force. Nondimensionalization of mathematical model describing the flow system is accomplished by a set of compatible transformations. An accurate solution of ordinary differential equations is achieved by practicing spectral quasilinearization method. The present method is capable of giving results with good accuracy in few iterations, which infers speedy convergence. Solution‐based error norm (a measure of difference of approximate solution in two consecutive iteration level) is presented to authenticate precision of obtained approximate solution. The similarity between present approximate results and previously reported results is noted to check correctness. Obtained numerical solutions were replicated in a diagrammatic form to visualize the impact of flow parameters. Ratio of relaxation to retardation time produces an enhancing influence on momentum and nanoparticle concentration and a declining effect on the fluid temperature. Riga plate strengthens the momentum, which intensifies the transport of heat energy from boundary layer region, resulting in a reduction in fluid temperature. 相似文献
4.
The present study aims to investigate Marangoni‐forced convective nanofluid flow over an electromagnetic actuator (Riga plate). A first‐order homogeneous chemical reaction is considered. The thermocapillary and solutocapillary Marangoni effect developed by the surface tension is considered as a driving force for the nanofluid. In addition, Grinberg‐term is accounted to involve the impact of Lorentz force impinged by the actuator in the model. A set of nonlinear ordinary differential equations is obtained via suitable transformations for a nonsimilar analysis. Series solutions are achieved through homotopy to discuss the behavior of the velocity field, thermal distribution, and concentration of the nanoparticles graphically. The variation in Nusselt and Sherwood numbers is discussed. The outcomes declared that the flow parallel to the surface of the plate is assisted by the Lorentz forces generated by electromagnetic bars of the actuator resulting in an enhancement in the fluid motion. Furthermore, the stronger Marangoni effect resulted in the declining trend of the temperature profile. The concentration of nanoparticles near the surface reduced intensive chemical reaction inside the nanofluid. 相似文献
5.
In the current communication, three-dimensional Williamson fluid flow past a bidirectional inclined stretching plate with novel Hall current, nonuniform heat source/sink, and nth-order chemical reaction features are investigated. Rosseland's diffusion model is defined for the radiation heat transfer. The nonlinear governing derivative equations satisfying the flow are transmuted to the coupled derivative equations by employing the local similarity quantities and then solved numerically through the Runge–Kutta–Fehlberg method utilizing the shooting quadrature. An inclusive analysis is reported via graphs for the flow rate field, temperature, and concentration distributions for different evolving terms of immense concern. Wall dragging effect and wall heat gradient and wall concentration gradient have been examined, plotted, and described. The detailed geometry reveals that dimensionless velocity field is monotonically rising as the Hall parameter rises. The chemical reaction concentration for the Williamson fluid is enhanced with expanding values of the magnetic field parameter. Transitional values of wall stress components upturn with an increase in Hall parameter while the Williamson term is boosted. Nusselt number is reduced as the Williamson term rises and the Sherwood number enhances with a rising chemical reaction term. The results are verified for limiting cases by comparing with various investigations and found to have excellent accuracy. 相似文献
6.
This investigation focuses on the influence of thermal radiation on the magnetohydrodynamic flow of a Williamson nanofluid over a stretching sheet with chemical reaction. The phenomena at the stretching wall assume convective heat and mass exchange. The novelty of the present study is the thermodynamic analysis in the nonlinear convective flow of a Williamson nanofluid. The resulting set of the differential equations are solved by the homotopy analysis method. We explored the impacts of the emerging parameters on flow, heat, and mass characteristics, including the rate of entropy generation and the Bejan number through graphs, and extensive discussions are provided. The expressions for skin friction, Nusselt and the Sherwood numbers are also analyzed and explored through tables. It is concluded that the rate of mass transfer may be maximized with the variation of the Williamson and chemical reaction parameters. Moreover, the entropy generation rate and the Bejan number are augmented via increasing the Williamson parameter. 相似文献
7.
A steady two‐dimensional Casson nanofluid flow over the permeable stretching/shrinking sheet along the viscous dissipation and the chemical reaction is studied in this article. The convective boundary condition is incorporated in energy equation. Similarity variables are applied to convert the governing partial differential equations into ordinary differential equations. The numerical solutions of the equations are obtained by using the shooting method with Maple implementation. The numerical findings indicate occurrence of the dual solutions for a certain range of stretching/shrinking and suction parameters. Therefore, a stability analysis is done to find the solution that is stable and physically realizable. The effects of the pertinent physical parameters on velocity, temperature, and concentration profiles are investigated graphically. Numerical results of various parameters involved for skin friction coefficient, the local Nusselt as well as Sherwood numbers are determined and also discussed in detail. The Casson and suction parameters decrease the velocity in the first solution, whereas they increase it in the second solution. The rate of heat transfer increases in both solutions with an increment in Eckert number, Biot number, thermophoresis, and Brownian motion parameters. Thermophoresis and Brownian motion parameters show opposite behavior in the nanoparticle's concentration. The nanoparticle concentration decreases in both solutions with increment in Schmidt number, Brownian motion, and chemical reaction parameters. 相似文献
8.
A study on utilization of ground source energy for space heating using a nanofluid as a heat carrier
Ground source heat pump (GSHP) systems are well established as an energy-efficient space conditioning device. However, for better utilization of the ground source, improvement in GSHP performance is desirable, which limits the small temperature difference between the ground and the circulating fluid. In this study, efforts have been made to investigate the performance of a ground heat exchanger (GHX) with a nanofluid as a heat carrier. Mathematical modeling is performed for the closed-loop vertical U-tube GHX with six different (Al2O3, CuO, graphite, multiwalled carbon nanotube, graphene, and Cu) water-based nanofluids. The effect of different operating parameters on GHX length, fluid temperature, and pressure drop with nanofluids is determined. On the basis of the analytical results, it is found that the graphite particle-based nanofluid plays a prominent role to enhance the performance of the GHX as compared with other nanoparticles. The maximum enhancement in the increase in outlet fluid temperature and reduction in pipe length with graphite particle-based nanofluid are 68.3% and 63.3%, respectively, for an increase in temperature difference from 7°C to 15°C between the atmosphere and the ground. Also, with the graphite particle-based nanofluid and the increase in pipe diameter from 20 to 50 mm, the fluid outlet temperature increases up to 11.2%, and the requirement in GHX length reduces up to 55%. 相似文献
9.
The given investigation concerns the study of non-Newtonian Oldroyd-B fluid flow across a permeable surface along with nonlinear thermal radiation, chemical reactions, and heat sources. Equations modified are thus numerically evaluated by employing bvp4c-technique. Obtained outcomes are exhibited graphically. Pictorial notations are used to investigate the consequences of necessary parameters of velocity, energy, and mass. Acquired outcomes provide promising agreement with already established consequences provided in the open literature. The obtained results guided that magnetic field parameter (), porosity parameter (), Deborah number reduce momentum boundary layer thickness, furthermore, growth in the relevant Deborah number improves the corresponding momentum boundary layer. 相似文献
10.
11.
The heat transfer mechanism of nanofluids has numerous industrial applications owing to the non-Newtonian behavior and has been exercised as a thermophysical phenomena in presence of thermal radiation. The present paper deals with the thermal transfer characteristics of time-independent magnetohydrodynamics Williamson fluid past a stretching surface in presence of the reaction of chemical equilibrium is dealt. The flow constitutive nonlinear partial differential coupled equations are transmitted into ordinary differential equalities by employing relevant similarity transmutations. These deduced equations are determined by using the Runge–Kutta numerical technique with a shooting approach with the aid of MATLAB software. Influences of distinct pertinent flow parameters like an inclined uniform magnetic field, Soret number, heat generation/absorption, and Schmidt number constrained to convective boundary condition is displayed through graphs with relevant physical interpretations. Computed numerical values for the friction factor coefficient, local Nusselt parameter, and Sherwood number are tabulated. 相似文献
12.
13.
This work examines the heat transfer properties of magnetohydrodynamic nanofluid flow. Through a similarity conversion, the leading structure of partial differential equations is changed to that of ordinary differential equations. A rigorous mathematical bvp4c methodology is used to generate numerical results. The purpose of this study is to characterize the different temperature, concentration, and velocity limitations on a nanofluid with a magnetic effect that is spinning. The findings for rotating nanofluid flow and heat transfer characteristics of nanoparticles are shown using graphs and tables. The influence of physical factors such as heat transfer rates and skin friction coefficients is studied. When the magnetic parameter M is raised, the velocity of the nanoliquid decreases. A rise in thermal radiation (Rd) causes the temperature graphs to grow substantially, although the concentration profiles exhibit the opposite tendency. The effect of the convective heat transfer factor Bi on temperature is shown to increase as Bi increases, but the concentration distribution decreases as Biot increases. 相似文献
14.
The present investigation aims to explore the influence of a mixed convection and nonuniform heat source/sink on unsteady flow of a chemically reactive nanofluid driven by a bidirectionally expandable surface. Convective heat transport phenomenon is used to maintain the temperature of the surface. Moreover, zero mass flux is also accounted at the surface such that the fraction of nanomaterial maintains itself on strong retardation. The governing nonlinear set of partial differential equations is transformed into a set of ordinary differential equations via a suitable combination of variables. The Keller‐Box scheme has been incorporated to make a numerical inspection of the transformed problem. The spectacular impacts of the pertinent constraints on thermal and concentration distributions are elucidated through various plots. Graphical outcomes indicate that the thermal state of nanomaterial and nanoparticles concentration are escalated for elevated amounts of Biot number, porosity parameter and nonuniform heat source/sink constraints. Furthermore, it is also seen that escalating amounts of unsteady parameter, temperature controlling indices, Prandtl number, and expansion ratio parameter reduce the thermal and concentration distributions. Numerical results for the rate of heat transference have been reported in tabular form. The grid independence approach is used to verify the convergence of the numerical solution and the CPU run time is also obtained to check the efficiency of the numerical scheme adopted for finding the solution. 相似文献
15.
C. S. Sravanthi 《亚洲传热研究》2020,49(1):86-102
The purpose of the present paper is to explore the second order slip effects on nanofluid flow over a vertical cone. The effects of nonlinear thermal radiation and nonuniform heat source/sink are also taken into account. Water with copper nanoparticles is used as nanofluid in this investigation. The governing partial differential equations for the flow are converted into ordinary differential equations by using transformations and then are solved using homotopy analysis method. The influence of various important parameters on velocity, temperature, skin‐friction, and Nusselt number are presented through graphs. Results indicate that the velocity and magnitude of skin friction decrease with a rise in first and second order velocity slips. A raise in either first or second order temperature jump causes a fall in temperature. Nonlinear radiation increases the more rapidly when compared to the linear radiation case. 相似文献
16.
17.
The consequences of chemical reaction, on unsteady magnetohydrodynamic heat and mass transport laminar flows of a viscous, electrically conducting with heat-generating or absorbing fluid enclosed through a semi-infinite absorbent plate has been premeditated. The plate is assumed to be in motion with a constant velocity within the path of fluid flow. A homogeneous magnetic field performs at right angles to the absorbent surface; it is absorbing the fluid with a suction velocity varying with a certain instant of time. The nondimensional governing equations for the present configuration are solved systematically utilizing harmonic and nonharmonic terms. Graphical consequences for the velocity, temperature, and concentration profiles together supported by the investigative solutions are displayed and discussed computationally. The resulting velocity is reducing by an augment in the strength of the magnetic field and Prandtl number, whereas it is enhancing by growing in the permeability of the porous medium. The temperature delivery is reduces by an escalating heat source parameter and occurrence of fluctuation. It is significant to note that the temperature increases notably with growing the radiation absorption parameter. The influences of the chemical reaction and Schmidt number reduced the concentration in the entire fluid medium. 相似文献
18.
Chemically reacting magnetohydrodynamic radiative flow of convective free stream nanofluid through a stretching cylinder using Buongiorno's model is discussed. The behavior of Brownian motion and thermophoresis is also appropriate. By adopting the similarity transformation, the partial differential equation is diminished into a first-order ordinary differential equation (ODE). Since transformed equations are highly nonlinear these ODEs are solved by using mathematical simulation. The shooting procedure has been adopted to resolve converted equations along the attendant Runge–Kutta–Fehlberg technique. The reason behind the present work is to research the effects of different parameters of fluid, namely, magnetic parameter, free stream velocity, Brownian motion, thermophoresis, chemical reaction, heat radiation, Lewis number on nanoparticle concentration, temperature, and velocity distribution. The impact of significantly participating parameters on velocity, concentration, and temperature distribution is distinguished with appropriate physical significance. The convergence of solutions for temperature, velocity, and concentration profiles is studied carefully. The measured challenges of nanofluids are scale-up capacity, increase in nanofluid viscosity, nanoparticle dispersion, and nanofluid cost. It is observed that nanoparticle temperature rises for more value of Brownian motion parameter while it declines for higher Lewis number. The current study in the cylindrical region is related to novel free stream flow in the presence of chemical reactions along with convective conditions which find applications in electronic systems like microprocessors and in a wide variety of industries and in the field of biotechnology. The current research helps control the transport phenomena, helping production companies to find the quality of the desired product. 相似文献
19.
In this article, we investigate the heat transfer characteristics of a Maxwell nanofluid along a stretching sheet with transverse magnetic field, considering the presence of heat source/sink and chemical reaction. We consider appropriate similarity transformation for transforming the governing nonlinear equations into nondimensional highly nonlinear coupled ordinary differential equations. The optimal homotopy analysis method is utilized for solving the resultant-coupled equations. The impact of all sundry parameters, like, Deborah number, Prandtl number, magnetic parameter, thermophoresis, rotation parameter, chemical reaction, velocity slip, Schmidt number, Brownian motion parameter, heat sources per sink, Biot number, and Eckert number, on the temperature, velocity, and concentration fields is reported, analyzed, and described through graphs and tables. It is noticed that higher values of magnetic parameter and Deborah number reduce the horizontal velocity field. Furthermore, it is observed that the Biot number and heat source/sink parameter enhance the temperature distribution. 相似文献
20.
Kasibhotla Satya Srinivasa Babu Areti Parandhama Rachamalla Bhuvana Vijaya 《亚洲传热研究》2022,51(4):2885-2904
A numerical review on magnetohydrodynamics radiative motion of Cross nanofluid across an exponentially stretchable surface near stagnation point with varying heat source/sink is addressed. Brownian movement and thermophoretic impacts are assumed. The governing equations for this study are first altered as a system of ordinary differential equations by similarity transformation. With an aid of the Runge–Kutta 4th order mechanism together with the shooting procedure, the impacts of several pertinent parameters including chemical reaction on regular profiles (velocity, temperature, and concentration) are explicated. The consequences of the same parameters on surface drag force, transfer rates of heat, and mass are visualized in tables. From the analysis, it was noticed that the magnetic field parameter enhances the temperature and decreases the velocity of the Cross nanofluid. Also, fluid temperature is an increasing function with thermal radiation and nonuniform heat source/sink. The rate of heat transfer is increased with thermophoresis and diminished with Brownian motion. Sherwood's number is diminished with Brownian motion but it was boosted up with thermophoresis. The present results are compared with published results and those are in agreement. 相似文献